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I. Synopsis
In principle, new theoretical structures in physics, unlike arches and other 
architectural structures, could be erected without the use of any scaffolds. 
After all, that is essentially how the four-dimensional formalism of special 
relativity, the curved space-times of general relativity, and the Hilbert-space 
formalism of quantum mechanics are introduced in modern textbooks. His-
torically, however, such structures, like arches, were originally erected on 
top of elaborate scaffolds provided by the structures they eventually either 
partially or completely replaced. The metaphor of arches and scaffolds high-
lights the remarkable degree of continuity in instances of theory change that, 
at first sight, look strikingly discontinuous. After putting to rest some his-
toriographical worries about the metaphor and presupposing as little 
knowledge of the relevant physics and mathematics as possible, I describe 
how some key steps in the development of relativity and quantum theory in 
the early decades of the twentieth century can be captured quite naturally 
in terms of arches and scaffolds. Given how easy it is to find examples of this 
kind, I argue that it may be worthwhile to further analyze this pattern of 
theory change with the help of some of Stephen Jay Gould’s ideas about evo-
lutionary biology, especially his notion of constraints. In honor of Gould, 
I have tried to write this paper as a Gouldian pastiche.1

II. Metaphors for Theory Change
In the section “Plans for Research” of a 1953 application for a Guggenheim 
Fellowship, Thomas S. Kuhn outlined two book projects that would eventually 
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result in The Copernican Revolution (Kuhn [1957] 1999) and The Structure 
of Scientific Revolutions (Kuhn [1962] 2012). He already had the title of Struc-
ture but not the terms paradigm and paradigm shift. Comparing science to 
architectural structures, he wrote:

Science, then, does not progress by adding stones to an initially incomplete 
structure, but by tearing down one habitable structure and rebuilding to a 
new plan with the old materials and, perhaps, new ones besides. (Hufbauer 
2012, 459)2

The “adding stones” metaphor with which Kuhn contrasts the “tearing down” 
metaphor can be found, for instance, in the preface of Rudolf Carnap’s 
Aufbau, one of the central texts of logical positivism, the philosophical pro-
gram that Kuhn was reacting against. In philosophy, Carnap wrote, one 
ought to proceed as in the natural sciences, where “one stone gets added to 
another, and thus is gradually constructed a stable edifice, which can be 
further extended by each following generation” (Carnap 1928; quoted in 
Sigmund 2017, 137).3

Neither of these building metaphors for how old theories get to be re-
placed by new ones does justice to all or even most instances of theory 
change. When building a new theory, one tends to neither simply add to nor 
simply tear down an old theory. The old cumulative picture may be wrong 
but so is the alternative picture of a new theory or paradigm built on the 
burning embers of the old one, a picture conjured up and reinforced by the 
way in which Kuhn exploited the political connotations of his revolution 
metaphor in Structure.4 It is good to remind ourselves right at the outset of 
this paper that “the price of metaphor is  .  .  . eternal vigilance” (Lewontin 
1963, 230).5

It has widely been accepted that neither the transition from geocentric 
to heliocentric astronomy nor the transition from nineteenth-century ether 
theory to special relativity fits the mold of a Kuhnian paradigm shift in the 
sense of tearing down one structure and replacing it by another (Swerdlow 
and Neugebauer 1984; Janssen 2002). In The Copernican Revolution, Kuhn 
([1957] 1999, 182) himself used the completely different metaphor of a “bend 
in an otherwise straight road” to characterize the “shift in  .  .  . direction 
in  .  .  . astronomical thought” marked by Copernicus’s De Revolutionibus. 
Both this “bend in the road” metaphor and another metaphor Kuhn was fond 
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of using, that of a gestalt switch (Kuhn [1962] 2012, 85), are incompatible with 
the metaphor of tearing down some old structure and erecting a new one.

Does the metaphor of Kuhn’s Guggenheim application at least capture 
the major theoretical upheaval of the mid-1920s known as the quantum rev-
olution? In his book on the Bohr model of atomic structure, historian of 
science Helge Kragh suggests it does. He writes that matrix mechanics, the 
earliest incarnation of the new quantum theory, “grew out of what little was 
left” of the old quantum theory of Niels Bohr and Arnold Sommerfeld—“its 
ruins” (Kragh 2012, 368). The preface of a popular undergraduate physics 
textbook gives a similar impression:

Quantum mechanics is not, in my view, something that flows smoothly and 
naturally from earlier theories. On the contrary, it represents an abrupt 
and revolutionary departure from classical ideas. (Griffiths 2005, viii)

The Dutch physicist Hendrik B. G. Casimir, who studied with some of the 
quantum revolutionaries of the mid-1920s, likewise emphasized the disrup-
tive nature of the quantum revolution. “Between 1924 and 1928,” he wrote 
in his autobiography, based in part on six lectures at the University of Min-
nesota in 1980, the development of a new quantum mechanics “swept phys-
ics like an enormous wave, tearing down provisional structures, stripping 
classical edifices of illegitimate extensions, and clearing a most fertile soil” 
(Casimir 1983, 51). Casimir’s mixed metaphor, however, still leaves room for 
continuity in the quantum cataclysm. His tidal wave did not level the classi-
cal building in its entirety but only washed away parts of it.

One will search Kuhn’s writings in vain for an account of the quantum 
revolution in which the new paradigm was erected on the ruins of the old 
one. And this is not just because, confounding some of his commentators,6 
Kuhn avoided the terminology of Structure in his historical writings.7 In “Re-
flections on my Critics,” his contribution to the proceedings of the 1965 
conference in London that pitted him against Karl Popper, Imre Lakatos, 
Paul Feyerabend, and others, Kuhn (1970, 256–59) sketched how he saw the 
transition from the old quantum theory to matrix mechanics. He put great 
emphasis on what he saw, with considerable justification, as the crisis of the 
old quantum (calling it a “case book example” of this key concept of Struc-
ture8) but characterized the way out of this crisis as “a series of connected 
steps too complex to be outlined here” and criticized Lakatos for introducing, 
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in his account of the same episode, “the crisis-resolving innovation . . . like 
a magician pulling a rabbit from a hat” (Kuhn 1970, 256–57). So, for Kuhn, 
a paradigm shift following a crisis did not necessarily have to be a wholesale 
and abrupt break with the past.

In fact, many elements of continuity in the transition from classical to 
quantum physics are on display in Max Jammer’s (1966) classic, The Con-
ceptual Development of Quantum Mechanics, the closest thing we have to a 
canonical account of this transition. As Jammer says in the preface, one of 
his main objectives was to show

how in the process of constructing the conceptual edifice of quantum me-
chanics each stage depended on those preceding it without necessarily 
following from them as a logical consequence. (Jammer 1966, vii)

Olivier Darrigol more explicitly focused on continuities rather than dis-
continuities in his book From c-Numbers to q-Numbers. In the introduction, 
he expressed his conviction that “to obtain new theories” modern physicists 
“extend, combine, or transpose available pieces of theory” (Darrigol 1992, 
xxii). Jürgen Renn (2006) has introduced the notion of “Copernicus pro-
cesses” to make a similar point.9 One of the mottos Darrigol chose for his 
book has quantum architect Paul Dirac, in unpublished lecture notes of 1927, 
directly contradicting the assessment of the modern textbook writer quoted 
above:

The new quantum theory requires very few changes from the classical 
theory . . . so that many of the features of the classical theory to which it owes 
its attractiveness can be taken over unchanged into the quantum theory. 
(Darrigol 1992, xiii)

The clause I left out—“these changes being of a fundamental nature”—gives 
Dirac’s statement a paradoxical flavor. The key to the resolution of this para-
dox will be given in section IV (see note 47). Following Darrigol’s lead, more 
recent work on the early history of quantum physics has highlighted a vari-
ety of continuities.10

To sum up: as long as the concept of a paradigm shift includes the “tear-
ing down” element emphasized in Kuhn’s Guggenheim application, neither 
the Copernican revolution, nor the relativity revolution, nor the quantum 
revolution fits the bill. Some of the revolutionaries in these cases can fairly 
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be labeled iconoclasts, but none of them simply smashed the icons of the old 
guard.

I therefore propose—with some trepidation—a different building meta-
phor for theory change, one that involves both adding to and tearing down 
old structures and one that captures both continuities and discontinuities. I 
will present five examples from the early history of relativity and quantum 
theory, my area of expertise as a historian of science, in which a new theo-
retical structure can be seen, or so I will argue, as an arch built on top of a 
scaffold provided by an older theoretical structure discarded (at least in part) 
once the arch was finished.11

In four of these examples, the scaffold was discarded in its entirety once 
physicists recognized that the arch could support itself. In my last example, 
the second one from the history of quantum theory, only part of the scaffold 
was dismantled while other parts stayed in place long after the arch was 
finished. In this case, both arch and scaffold became part of the edifice of 
quantum theory as physicists use and teach it today. In this example, the rela-
tion between arch and scaffold is considerably more complicated than in the 
first four. However, to the extent that the arch-and-scaffold metaphor can prof-
itably be used to characterize other instances of theory change at all, I expect 
the messy complicated cases to be more typical than the clean, simple ones.

As my two examples from the history of quantum theory will illustrate, 
the theoretical structure that plays the role of the arch in one instance of 
theory change can play the role of the scaffold in the next. This observation 
helps explain why scaffolds are sometimes only partially discarded after they 
have served their purpose in the building of an arch. What is merely a scaf-
fold for some theorists may have been an arch for some of their predeces-
sors and continue to be seen and treated as such by part of the relevant 
community.

The arch-and-scaffold metaphor can be broken down into specific ele-
ments with the help of Figure 4.1. This figure shows the construction of one 
of a total of nine arches, each 120 feet wide, of a bridge over the Thames in 
London in the 1810s. Originally called the Strand Bridge, it was renamed 
in 1817 to commemorate the Battle of Waterloo. It was demolished and re-
placed by a new one in the 1940s.

Figure 4.1 shows various components of the arch-and-scaffold metaphor 
that I will be using in my examples, mindful of the old adage that nothing 
kills a metaphor faster than the attempt to formalize it. The foundation on 
which both scaffold and arch are built is called the tas-de-charge. Then there 
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is the scaffold or centering frame. The stones placed on this scaffold to make 
up the arch are called the voussoirs. Those at the ends are called the spring-
ers; the one in the center is called the keystone. The distinction between 
springers and keystones can meaningfully be made for the theoretical struc-
tures playing the role of an arch in my metaphor as well. For instance, the ini-
tial conception of a new theoretical structure can be seen as springers; the 
finishing touches as the keystone. Or, combining the two examples I will dis-
cuss from the history of special relativity, one can think of the new space-
time structure as springers and of the new formalism for the physics of 
systems in that new space-time as the keystone. In the first of my two ex-
amples from the history of quantum theory (the fourth case study in sec-
tion IV), we will even encounter an element (Niels Bohr’s correspondence 
principle as it was used by several physicists in 1924–1925) corresponding 
to the final element labeled in Figure 4.1, the windlass, the instrument used 
to lift both the scaffold and the arch stones.

Figure 4.1. Elements of the arch-and-scaffold metaphor illustrated by the construction of the 
Strand Bridge over the Thames in London (renamed the Waterloo Bridge in 1817). Cropped version 
of Print of the Strand Bridge (taken in the Year 1815), drawn by Edward Blore, engraved by George 
Cooke, and published by William Bernard Cooke (London, 1817). British Museum, museum number 
1880,1113.1403.
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A nice feature of the example of the scaffolding of a stone-arch bridge is 
that both scaffold and arch can serve as a bridge, though the latter will make 
for a sturdier one than the former. In the case of a bridge, the relation between 
arch and scaffold is thus similar in this respect to that between a scaffolded 
and a scaffolding theory. In fact, the scaffolding shown in Figure 4.1 has ba-
sically the same structure as the wooden footbridge in Cambridge known as 
the Mathematical Bridge shown in Figure 4.2. The same relation is illustrated 
by two incarnations of the arched Walton Bridge across the Thames: a 
wooden bridge was completed in 1750 (and painted by Canaletto in 1754); 
a stone bridge opened in 1788 (and was painted by J. M. W. Turner in 1805).12

The basic idea behind the arch-and-scaffold metaphor is hardly new. For 
instance, in his contribution to the proceedings of the 1965 conference in 
London mentioned above, Lakatos noted that

some of the most important research programs in the history of science were 
grafted on to older programs with which they were blatantly inconsistent. For 
instance, Copernican astronomy was “grafted” on to Aristotelian physics, 
Bohr’s programme on to Maxwell’s  .  .  . As the young grafted program 

Figure 4.2. The “Mathematical Bridge” in Cambridge. Picture by Joseph D. Martin.
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strengthens, the peaceful co-existence comes to an end, the symbiosis be-
comes competitive and the champions of the new programme try to replace 
the old programme altogether. (Lakatos 1970, 142)

Whereas Lakatos used the term grafting, Werner Israel, in a paper on the pre-
history of black holes, actually uses the term scaffolding (“The old and dis-
carded is often scaffolding for the new”) and explicitly offers the mechanism 
for theory change his metaphor is supposed to capture as an alternative to 
“the Kuhnian cycle of paradigm and revolution” (Israel 1987, 200). He gives 
two examples, both from nineteenth-century physics: “Faraday’s concept of 
field grew out of the aether, Carnot’s thermodynamics from the notion of a 
caloric fluid” (Israel 1987, 200). Unlike Lakatos and Israel, I will work out 
my examples in considerable detail.

There is some family resemblance between the arch-and-scaffold meta-
phor and two other well-known metaphors for the construction of knowl-
edge, Sextus Empiricus’s and Wittgenstein’s ladders and Neurath’s ship. In 
the penultimate proposition of the Tractatus, Wittgenstein (1921, 89, Propo
sition 6.54) noted that his reader “must, so to speak, throw away the ladder 
after he has climbed up it.” This ladder metaphor has a rich history going 
back at least to Plato (Agassi 1975, 456–57; Gakis 2010). To mention just one 
precedent, Francis Bacon (1620, 14), in his Novum Organum, talked about 
“The Ladder of the Intellect.” He compared the way in which authors sup-
press some of the evidence for their claims to “what men do in building, 
namely after completion of the building, remove the scaffolding and ladders 
from sight” (Bacon 1620, 97, Aphorism 125).

Neurath used his ship metaphor in several publications. In a booklet 
written in response to the first volume of Oswald Spengler’s Decline of the 
West, he wrote:

We are like sailors who on the open sea must reconstruct their ship but are 
never able to start afresh from the bottom. Where a beam is taken away a new 
one must at once be put there, and for this the rest of the ship is used as support. 
(Neurath 1921, 199 [emphasis added]; quoted and discussed in Sigmund 
2017, 88)

Substituting scaffold for support in the italicized clause, we see that Neu
rath’s metaphor is closer to the arch-and-scaffold metaphor than the prover-
bial ladders of Wittgenstein and others.13 This was recognized by Wimsatt 
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and Griesemer (2007, 300), who refer to Neurath’s metaphor approvingly in 
a paper on scaffolding. The italicized clause, however, does not return in a 
later version of the metaphor. As Neurath put it in Erkenntniss, the house 
journal of the Vienna Circle in the early 1930s (Sigmund 2017, 223): “We are 
like sailors, who have to rebuild their ship on the open sea, without ever be-
ing able to dismantle it in dry-dock and reconstruct it from the best compo-
nents” (Neurath 1932–1933, 92).14

The metaphor of a scaffold has also been used by several mathematicians. 
Carl Friedrich Gauss, we read in reminiscences recorded by a friend shortly 
after his death, “never gave a piece of work to the public until he had given it 
the perfection of form he desired for it. A good building should not show its 
scaffolding when completed, he used to say” (Sartorius von Waltershausen 
1856, 67). Some of Gauss’s contemporaries therefore compared him to a fox 
erasing its tracks in the sand with its tail.15 Historian of astronomy Curtis 
Wilson quotes a much earlier example of this use of the scaffolding meta-
phor. Wilson (2001, 168–69) is relating how Newton’s early devotion to al-
gebra gave way to a strong preference for geometry. He recalls how Newton 
himself once claimed that he had constructed the proofs of most proposi-
tions in his Principia analytically but presented them in geometrical terms 
and thus, to use the Gaussian metaphor, removed the analytical scaffolding. 
This would have made for a nice illustration of the metaphor had not Tom 
Whiteside, editor of Newton’s mathematical papers, shown Newton’s claim 
to be false. In a footnote to this passage, however, Wilson quotes Thomas 
Hobbes actually using the metaphor in his attack on John Wallis’s algebra: 
“Symbols are poor, unhandsome, though necessary, scaffolds of demon-
stration; and ought no more to appear in public, than the most deformed 
necessary business which you do in your chambers” (Hobbes 1656, 248; 
quoted in Wilson 2001, 185n36). This use of the scaffolding metaphor by 
Hobbes and Gauss is close to mine. The more common usage among math-
ematicians, however, appears to be quite different.

As David Hilbert liked to point out, the mathematician “erects living 
quarters before turning to the foundations” (Rowe 1997, 548). This is a para-
phrase of the following passage in (unpublished) notes taken by Max Born, 
another quantum architect, of lectures Hilbert delivered in Göttingen in 
1905:

The buildings of science are not erected the way a residential property is, where 
the retaining walls are put in place before one moves on to the construction 
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and expansion of living quarters. Science prefers to get inhabitable spaces 
ready as quickly as possible to conduct its business. Only afterwards, when it 
turns out that the loosely and unevenly laid foundations cannot carry the 
weight of some additions to the living quarters, does science get around to 
support and secure those foundations. This is not a deficiency but rather the 
correct and healthy development. (Peckhaus 1990, 51; quoted in a different 
translation in Corry 1999, 163–64)

This attitude is clearly in evidence in Hilbert’s early work on general relativ-
ity. Whereas Einstein only threw in his fate with the elegant mathematics of 
Riemannian geometry once he had convinced himself that the blueprint it 
provided for a spacious new theory of gravity included a solid grounding in 
physics, Hilbert was happy to move into these new quarters without inspect-
ing the foundations first (see note 36).

The same attitude can be found in the methodological reflections of other 
mathematicians and mathematical physicists. My first example comes from 
a 1900 textbook by Paul Volkmann, professor of physics in Königsberg and 
an associate of Hilbert:

The conceptual system of physics should not be conceived as one which is 
produced bottom-up like a building. Rather it is a thorough system of cross-
references, which is built like a vault or the arch of a bridge, and which de-
mands that the most diverse references must be made in advance from the 
outset, and reciprocally, that as later constructions are performed the most 
diverse retrospections to earlier dispositions and determinations must hold. 
Physics, briefly said, is a conceptual system which is consolidated retroac-
tively. (Volkmann 1900, 3–4; quoted in Corry 2004, 61)

My second example comes from an address to the London Mathematical 
Society, delivered in 1924 by its outgoing president, William H. Young, and 
published two years later. I am not aware of any direct connection between 
Young and Hilbert, but Young’s wife, Grace Chisholm Young, a mathemati-
cian in her own right, earned her doctorate in Göttingen working with Hil-
bert’s most famous colleague, Felix Klein. Echoing the observation attributed 
to Gauss in the passage from a friend’s reminiscences quoted above, Young 
began his presidential address by reminding his audience of the common 
view that “all scaffolding is futile, because no scaffolding is to appear on the 
finished edifice” (Young 1926, 421). Young took exception to this view and 
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argued that it had been harmful to “The Progress of Mathematical Analysis 
in the Twentieth Century,” the topic of his presidential address. “It is essen-
tial,” he insisted, “to go to a higher discipline [in this case: set theory] in order 
to master a lower one [in this case: analysis]” (Young 1926, 427). More ad-
vanced mathematics—to paraphrase Young’s point—may be needed to prove 
results in more basic mathematics, which lesser mortals can then use with-
out having to worry about the higher mathematics ever again. So it is the 
higher rather than the lower mathematics that plays the role of the scaffold-
ing for Young. Hilbert expressed the same idea in a 1917 lecture. Hilbert, to 
paraphrase again, “described the axiomatic method as a process analogous 
to constructing ever deeper foundations to support a building still under 
construction” (Rowe 1997, 548). In my final case study in section IV, I will 
present Jordan’s transformation theory as the scaffold on which von Neu-
mann built the arch of his Hilbert space formalism. This case study, how-
ever, can alternatively be cast in terms of von Neumann deepening the 
foundation of Jordan’s theory, in which case von Neumann’s theory would 
provide the scaffold (in Young’s sense) built to secure Jordan’s mathemati-
cally unsound arch.

In his 1917 book, The Electron, American physicist Robert A. Millikan 
used a metaphor that combines my arch-and-scaffold metaphor and Hilbert’s 
building-and-foundation metaphor to describe the relation between Ein-
stein’s formula for the photoelectric effect, which Millikan had experimen-
tally verified the year before, and the controversial light-quantum hypothesis 
from which Einstein had derived this formula in 1905. Millikan wrote:

Despite . . . the apparently complete success of the Einstein equation, the phys-
ical theory of which it was designed to be the symbolic expression is found 
so untenable that Einstein himself, I believe, no longer holds to it, and we are 
in the position of having built a very perfect structure and then knocked out 
entirely the underpinning without causing the building to fall. It stands com-
plete and apparently well tested, but without any visible means of support. 
These supports must obviously exist, and the most fascinating problem of 
modern physics is to find them. (Millikan 1917, 230; quoted and discussed 
by Stuewer 2014, 156)

Millikan, in other words, saw Einstein’s formula for the photoelectric effect 
as an arch in danger of collapsing and thus in need of a scaffold to support 
it. As we will see in section IV, we can likewise think of von Neumann 
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bringing in Hilbert space as a scaffold to prevent Jordan’s arch from collaps-
ing (see note 37 for another, more clear-cut, example).

On the face of it, Heinrich Hertz’s attitude toward Maxwell’s theory, ex-
pressed in his famous line that “Maxwell’s theory is Maxwell’s system of 
equations” (Hertz 1893, 21), may look similar to Millikan’s attitude toward 
the theory from which Einstein derived the formula for the photoelectric ef-
fect. Hertz, on this reading, took Maxwell’s “perfect structure and then 
knocked out entirely the underpinning without causing the building to fall.” 
Hertz himself, however, saw his contribution to Maxwell’s theory quite dif-
ferently. In a lecture at the 1889 Naturforscherversammlung (the annual meet-
ing of the German Society of Natural Scientists and Physicians) held that 
year in Heidelberg, Hertz used the metaphor of a bridge, similar to the one 
used by Volkmann in the passage quoted above, to explain the importance 
of his experimental demonstration of electromagnetic waves for the further 
development of Maxwell’s theory. In his commemorative speech at the Ger-
man Physical Society in Berlin, shortly after Hertz’s early death, Max Planck 
referred to this lecture and further elaborated on Hertz’s metaphor. In his 
1889 lecture, Planck recalled, Hertz

compared Maxwell’s theory to a bridge that, with a bold arch, spans across 
the wide ravine between the regions of optical and electromagnetic pheno
mena, characterized by molecular and cosmic wavelengths, respectively. Be-
cause of these fast electrical vibrations, he explained at the time, new land 
had been gained in the middle of this ravine and a firmly planted pillar now 
stood on it providing additional support for the bridge. Since that time, var-
ious kinds of expert craftsmanship have made this pillar taller and broader, 
ensuring that today the bridge stands stronger and prouder than ever. It no 
longer just serves, as it did in the past, the occasional forays of the odd bold 
adventurer. No, it can already carry the heavy trucks of research in the exact 
sciences, constantly shipping the land’s treasures from one region to another, 
thereby enriching both. (Planck 1894, 283)

Planck’s elaboration of this metaphor reminds us that bridges are not built 
to be admired but used. The same is true for the metaphorical arches and 
bridges to be examined in this paper.
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III. Historiographical Scruples
Whiggishness: Three Lines of Defense
Before I present some concrete examples of theory change that, I argue, fit 
my metaphor of arches and scaffolds, I need to address the obvious worry 
that any historical narrative deploying this metaphor is intrinsically Whig-
gish.16 After all, we can only see in hindsight that one scientist’s arch was the 
next scientist’s scaffold. I have three lines of defense against this charge of 
Whiggishness, and I am prepared to make my stand on the third.

My first line of defense is that scientists sometimes do realize that they 
are building a scaffold and not an arch. Throughout the reign of the old quan-
tum theory, for instance, Bohr was keenly aware of its provisional character. 
In a letter to Sommerfeld of April 30, 1922, he described his work on the 
theory as a “sincere effort to obtain an inner connection such that one can 
hope to create a valid fundament for further construction” (Sommerfeld 2004, 
doc. 55; translation from Eckert 2013, 126). In the early 1920s, Göttingen 
emerged as another center for work on the old quantum theory, alongside 
Bohr’s Copenhagen and Sommerfeld’s Munich. Born, the leader of this 
third center, clearly saw the limitations of the theory too. In the preface of 
his book, Atomic Mechanics, he cautioned:

The work is deliberately conceived as an attempt . . . to ascertain the limits 
within which the present principles of atomic and quantum theory are valid 
and . . . to explore the ways by which we may hope to proceed . . . To make 
this program clear in the title, I have called the present book “Vol. I;” the sec-
ond volume is to contain a closer approximation to the “final” atomic me-
chanics . . . The second volume may, in consequence, remain for many years 
unwritten. In the meantime let its virtual existence serve to make clear the 
aim and spirit of this book. (Born 1925, v)17

The sequel would be written much sooner than Born anticipated. It was pub-
lished only five years later (Born and Jordan 1930). First, however, in 1927, 
an English translation of Born’s 1925 book appeared. Given the rapid devel-
opments since 1925, the decision to republish his treatise in translation 
without any substantive changes or additions could be called into question. 
Born tries to preempt criticism on this score in the preface. The first argu-
ment he gives in his defense is that “it seems to me that the time is not yet 
arrived when the new mechanics can be built up on its own foundations, 
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without any connection with classical theory” (Born 1927, xi). Without de-
nying the self-serving purpose of this preface, we can say that Born clearly 
recognized the role of the old theory in building up the new one.

Einstein used a building metaphor, suggestive at least of an arch and a 
scaffold, to describe the sense in which he considered general relativity, his 
theory of gravity, to be preliminary. In the fall of 1915, Einstein and Hilbert 
found themselves in a race to complete the theory (Janssen and Renn 2015). 
They eventually arrived at the same field equation. This equation determines 
what gravitational field a given matter distribution will produce. The two 
men agreed that the left-hand side of this equation describes the curvature of 
space-time, reflecting the central idea of the theory that gravity is part of the 
fabric of space-time. They did not agree, however, on the interpretation of 
the right-hand side, describing the matter responsible for this space-time 
curvature. Hilbert endorsed the view of Gustav Mie, a late representative of 
the so-called electromagnetic worldview (see the second case study in sec-
tion IV), that all matter ultimately consists of electromagnetic fields satisfy-
ing some nonlinear generalization of Maxwell’s equations. Einstein briefly 
flirted with this idea but rejected it. For him the right-hand side of his field 
equation was just a placeholder for whatever would be supplied later by a 
more satisfactory theory of matter. Two decades after he had introduced 
general relativity, Einstein was still waiting for such a theory. General rela-
tivity, he wrote in 1936,

is similar to a building, one wing of which is made of fine marble (left part of 
the equation), but the other wing of which is built of low grade wood (right 
side of equation). (Einstein 1936, 312; quoted and discussed in van Dongen 
2010, 62)

The wing made out of wood can be thought of as a scaffold awaiting the ar-
rival of the marble for the completion of this part of the building.

Robert Hooke is an early example of a natural philosopher with the hu-
mility to recognize that he was building a scaffold rather than an arch. Hooke 
even used the arch-and-scaffold metaphor, although he cast it in somewhat 
different terms.18 In the preface of his Micrographia, he wrote: “If I have con-
tributed the meanest foundations whereon others may raise nobler Super-
structures, I am abundantly satisfied” (Hooke 1665, xii–xiii). In a similar vein, 
Einstein (1917b, 91) wrote in his popular book on relativity that “the most 
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beautiful fate of a physical theory is to point the way to the establishment of a 
more inclusive theory, in which it lives on as a limiting case” (translation 
from Holton 1981, 101).19

One would expect it to be easier to find examples of scientists recogniz-
ing the preliminary character of theories put forward by their contempo-
raries and calling the arches erected by them mere scaffolds. Despite some 
crowdsourcing, however, I have only been able to find two such examples so 
far. Only in one of those is the term scaffold used explicitly.

The first example comes from Arthur Stanley Eddington’s Gifford Lec-
tures in Edinburgh in 1927. Eddington prefaced his discussion of wave me-
chanics with the following warning:

Schrödinger’s theory is now enjoying the full tide of popularity . . . Rather 
against my better judgment I will try to give a rough impression of the theory. 
It would probably be wiser to nail up over the door of the new quantum 
theory a notice, “Structural alterations in progress—No admittance except 
on business,” and particularly to warn the doorkeeper to keep out prying 
philosophers. I will, however, content myself with the protest that, whilst 
Schrödinger’s theory is guiding us to sound and rapid progress in many 
of  the mathematical problems confronting us and is indispensable in its 
practical utility, I do not see the least likelihood that his ideas will survive 
long in their present form. (Eddington 1928, 210–11)

The second example comes from an article in The Electrician in 1893, in 
which John Henry Poynting criticized the mechanical model of the ether 
that Oliver Lodge (1889) had promoted in his bestseller Modern Views of 
Electricity. This model is known as the cogwheel ether (see Figure 4.3).20 
Pierre Duhem famously and disapprovingly compared Lodge’s book to a 
factory:

Here is a book intended to expound the modern theories of electricity and to 
expound a new theory. In it there are nothing but strings which move around 
pulleys, which roll around drums, which go through pearl beads, which carry 
weights; and tubes which pump water while others swell and contract; toothed 
wheels which are geared to one another and engage hooks. We thought we 
were entering the tranquil and neatly ordered abode of reason, but we find 
ourselves in a factory. (Duhem 1914, 70–71; quoted in Hunt 1991, 87)
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Poynting had more sympathy for Lodge’s project. “We are all looking 
forward,” he wrote, “to the time when by mechanical explanation of 
electromagnetism, light shall once more become mechanical” (Poynting 
1893, 635). Yet, he cautioned, such explanations

are solely of value as a scaffolding enabling us to build up a permanent struc-
ture of facts, i.e., of phenomena affecting our senses. And inasmuch as we 
may at any time have to replace the old scaffolding by new, more suitable for 
new parts of the building, it is a mistake to make the scaffolding too solid, 
and to regard it as permanent and of equal value with the building itself. 
(Poynting 1893, 635)

The problem with Lodge’s work, according to Poynting (1893), was that he 
made the “scaffolding . . . as important as the building” (635).

As striking as these passages from the writings of Bohr, Born, Einstein, 
Eddington, Hooke, and Poynting are, I do not expect to find too many sci-
entists characterizing the theories of their contemporaries, let alone their 
own, as mere scaffolds for future theories. These examples thus only go so 
far in deflecting the charge of Whiggishness against the arch-and-scaffold 
metaphor.

Figure 4.3. Lodge’s “cogwheel ether” (Lodge 1889, 207).
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My second line of defense is that structures often inadvertently serve 
as scaffolds for other structures. So the use of the arch-and-scaffold met-
aphor does not automatically imply the kind of teleology responsible for 
the odium of Whig history. A good example—and the one that originally 
inspired my exploration of the metaphor—is the proposal by Alexander 
Graham Cairns-Smith (1985) in Seven Clues to the Origin of Life that the 
complex nucleotides of RNA and DNA were first assembled on a scaffold 
of minute clay crystals. Cairns-Smith (1985) asks: “How can a complex 
collaboration between components evolve in small steps?” (58). The an-
swer, he suggests, is “that every so often an older way of doing things will 
be displaced by a newer way that depends on a new set of subsystems. It 
is then that seemingly paradoxical collaborations may come about” 
(Cairns-Smith 1985, 59). He uses the arch-and-scaffold metaphor, com-
plete with two simple diagrams (see Figure 4.4), to illustrate how this can 
happen:

Consider this very simplified model—an arch of stones. This might seem to 
be a paradoxical structure if you had been told that it arose from a succes-
sion of small modifications, that it had been built one stone at a time. How 
can you build any kind of arch gradually? The answer is with a supporting 
scaffolding. In this case you might have used a scaffolding of stones. First you 
would build a wall, one stone at a time. Then you would remove stones to leave 
the “paradoxical” structure. Is there any other way than with scaffolding of 
some sort? Is there any other way to explain the kind of complex leaning to-
gether of subsystems that one finds in organisms, when each of several things 
depends on each other, than that there had been earlier pieces, now missing? 
(Cairns-Smith 1985, 59–60)

John Norton (2014, 685–87) used essentially the same analogy (including a 
drawing of an arch) that Cairns-Smith used for the origin of life to explain 

Figure 4.4. A wall of stones as a scaffold for an arch of stones (Cairns-Smith 1985, 59–60).
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how the long sequence of inductive inferences that eventually got us to to-
day’s scientific knowledge could ever have gotten off the ground.

Cairn-Smith’s example—and, for that matter, Norton’s—clearly shows 
that the arch-and-scaffold metaphor can be used without implying that the 
earlier structure was intentionally built as a scaffold. Yet it still does not quite 
put the worry about Whiggishness to rest. Unlike Norton, I am starting in 
medias res and not at the mythical dawn of humanity. In that case, a historical 
narrative in which a structure is called a scaffold before the construction of 
the arch built on top of it has even begun at least strongly suggests an element 
of teleology. Such a narrative is bound to lend an air of linearity and inevita-
bility to the transition from the scaffolding to the scaffolded theoretical struc-
ture. Fortunately, spelling out the danger of the metaphor in this way points 
to an obvious way to avoid it: tell the story backward! In other words—as the 
order of the terms already happens to suggest—have narratives using the 
arch-and-scaffold metaphor introduce the arches before the scaffolds.

This third line of defense against the charge of Whiggishness is both more 
effective than the other two and more natural than it may initially sound. A 
narrative that moves from arches to scaffolds neither implies nor suggests 
teleology. Instead it answers a question one naturally asks when standing in 
awe in front of an arch or some other architectural marvel: How did they 
build that? A satisfactory answer to such questions will often involve the 
identification of an earlier structure that served as the scaffold for the archi-
tectural structure and was then partially or completely taken down. Similar 
questions can be asked about theoretical structures in physics, such as the 
four-dimensional formalism of special relativity, the curved space-times of 
general relativity, and the Hilbert-space formalism of quantum mechanics. 
How did physicists come up with these formalisms to describe and explore 
nature? In at least some instances, as the examples discussed below will il-
lustrate, such questions can be answered by the identification of some ear-
lier formalism that scaffolded the new formalism and was discarded either 
in whole or in part once it was recognized that the new formalism no longer 
needed extraneous support.

Following Hilbert’s lead (see section II), mathematicians might want to 
put the metaphor on its head and have the new formalism play the role of the 
scaffold built retroactively to support earlier formalism playing the role of 
the arch, built hastily and in danger of collapsing. Two of the examples I will 
be discussing—both, unsurprisingly, involving mathematicians (Minkowski 
and von Neumann)—can be used to illustrate this “inverted” use of the meta-
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phor. When the metaphor is used in this way, we do not run afoul of the 
charge of Whiggishness because the scaffold is built after the arch.

When I use the metaphor without this kind of inversion (i.e., when the 
scaffold is built before the arch), I hope to steer clear of any pernicious Whig-
gishness by making the kind of question I am asking explicit in the way in-
dicated above. The arch-and-scaffold narratives offered in response to such 
questions neither imply nor suggest that the progression from the earlier 
to the later theoretical structure was linear or inevitable. This line of de-
fense, however, does place an important constraint on the construction of 
such narratives. To bring out and reinforce the analogy with the “How did 
they build that?” question we ask when we happen upon a puzzling architec-
tural structure, such narratives should all start with at least a preliminary 
characterization of the theoretical structure that plays the role of the arch in 
the story. Ideally, one then proceeds to tell the story backward. This kind of 
time reversal has been attempted in many movies and TV shows—with 
limited success.21 Given this checkered track record, it may be wiser to stick 
to the tried-and-true strategy of presenting a new historical account as an 
alternative to some canonical received view. I will at least try to combine 
this safe standard approach with the challenging one of telling the story 
backward, which is clearly the more elegant way of constructing a historical 
narrative based on the arch-and-scaffold metaphor.

Some historians may still not be satisfied. Even if they grant that I am 
not giving Whiggish answers, they may still object that I am asking Whig-
gish questions. Asking how something came about, after all, obviously pre-
supposes that it was there to begin with. This residual charge of Whiggishness 
does not bother me. I make no excuse for asking questions informed by 
present-day knowledge and for making decisions about what source mate-
rial to look at based on what I expect to shed light on the development of 
currently accepted theories. Which is not to say that there are no dangers 
and pitfalls to this approach (see, e.g., note 43). Still, this kind of Whiggish-
ness strikes me as relatively benign. In fact, it is implied by the commonly 
accepted names for the subfields I take myself to be working in—history of 
relativity theory and history of quantum mechanics. My examples of arches 
and scaffolds are all based on my earlier research in these two areas. The 
papers in which I published this research implicitly answer questions similar 
to those I explicitly raise when I recast parts of their narratives in terms of 
arches and scaffolds. Hence, far from compounding my Whiggish sins, I am 
actually atoning for them by adopting the arch-and-scaffold metaphor!
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No Actors’ Categories: Two Lines of Defense
A related objection to the arch-and-scaffold metaphor is that it is not an ac-
tors’ category. I can offer two rejoinders to defuse that charge. The first is that, 
even though there may not have been many, several historical actors did use 
the language of arches (or, at least, buildings) and their scaffolds. We have 
already seen passages from (or attributed to) several scientists (Poynting, Milli
kan), philosophers (Bacon, Hobbes, Wittgenstein), and mathematicians 
(Gauss, Hilbert), in which they use the term scaffold or terms like it (ladder, 
support, foundations).

We saw Poynting, in his 1893 critique of Lodge’s theory, warn his read-
ers not to mistake the scaffold for the building in science. Six years later, in 
his 1899 presidential address to the Section of Mathematical and Physical 
Science of the British Association for the Advancement of Science, he issued 
a more general version of this warning. “To give the hypotheses equal valid-
ity with facts,” he said on that occasion, “is to confuse the temporary scaf-
folding with the building itself” (Poynting 1899, 620). The paragraph 
concluding with this sentence suggests that “the building itself” refers to na-
ture itself. This paragraph also yields two more occurrences of the term 
scaffolding and one of ladder (cf. the passage from Bacon’s Novum Organum 
quoted in section II):

While the building of Nature is growing spontaneously from within, the 
model of it, which we seek to construct in our descriptive science, can only 
be constructed by means of scaffolding from without, a scaffolding of hypoth-
eses. While in the real building all is continuous, in our model there are 
detached parts which must be connected with the rest by temporary ladders 
and passages, or which must be supported till we can see how to fill in the 
understructure. (Poynting 1899, 620; quoted in Freund [1904] 1968, 227)

On the next page, Poynting alerted his readers to the danger of mistaking a 
preliminary theory for a definitive one: “It is necessary to bear in mind what 
part is scaffolding, and what is the building itself, already firm and complete” 
(Poynting 1899, 621; quoted in Freund [1904] 1968, 227). Here the contrast 
between scaffolding and building does not refer to the contrast between our 
scientific models of nature and nature itself but to that between preliminary 
partial theories (the “detached parts”) and more comprehensive and secure 
theories (the “understructure”).
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A few years before Poynting, the American paleontologist Edward 
Drinker Cope had issued a similar warning. In a letter to the editor of Sci-
ence, Cope used an analogy to buildings and scaffolds to defend the value of 
hypotheses as long as judgments about their truth or falsity are suspended:

Builders generally know the difference between the scaffolding and the build-
ing. And a builder will value the indication of faults in his scaffolding rather 
than general disquisitions on the uselessness of scaffolds in general. (Cope 
1895, 522)

Cope and Poynting were by no means the first to use the analogy to 
buildings and scaffolds to make these points. In 1820, Humphry Davy 
had already voiced some of the same concerns they raised in the 1890s, 
using remarkably similar language. In his address to the Royal Society upon 
taking up its presidency, Davy had cautioned his audience to “attach no im-
portance to hypotheses” and to treat “them rather as part of the scaffolding of 
the building of science, than as belonging either to its foundations, materials, 
or ornaments” (Davy 1820, 14).

On the European continent, Johann Wolfgang von Goethe made essen-
tially the same point in a passage that only seems to have been published 
posthumously:

Hypotheses are scaffoldings which one puts up before building and which 
one tears down once the building is complete. They are indispensable for the 
worker: only one should not take the scaffolding for the building. (Beutler 
1949, 9:653; translation from Agassi 1975, 457; see also Agassi 2013, 118)

The sentiment expressed here by Davy, Goethe, Cope, and Poynting can 
also be found in Preliminary Discourse on the Study of Natural Philosophy 
by the British astronomer and philosopher of science avant la lettre John 
Herschel: “To lay any great stress on hypotheses .  .  . except in as much as 
they serve as a scaffold for the erection of general laws, is to ‘quite mistake 
the scaffold for the pile’ ” (Herschel [1830] 1966, 204; see Agassi 1975, 457).

In an essay in Quarterly Reviews in 1840, Herschel provided a more elab-
orate and more eloquent statement of Poynting’s observation, quoted above, 
that “while the building of Nature is growing spontaneously [our] model of 
it . . . can only be constructed by means of scaffolding.” This is how Herschel 
put it:
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In erecting the pinnacles of this temple [of science], the intellect of man seems 
quite as incapable of proceeding without a scaffolding or circumstructure for-
eign to their design, and destined only for temporary duration, as in the 
rearing of his material edifices. A philosophical theory does not shoot up like 
the tall and spiry pine in graceful and unencumbered natural growth, but, 
like a column built by men, ascends amid extraneous apparatus and shape-
less masses of materials. (Herschel 1857, 67)

As the quotations from Planck in section II and Poynting in this section 
suggest, the history of electromagnetism may make for good hunting grounds 
for scaffolding metaphors. Here is one from the preserves of James Clerk 
Maxwell’s Treatise on Electricity and Magnetism:

We can scarcely believe that Ampère really discovered the law of action by 
means of the experiments which he describes. We are led to suspect, what, 
indeed, he tells us himself, that he discovered the law by some process which 
he has not shewn us, and that when he had afterwards built up a perfect dem-
onstration he removed all traces of the scaffolding by which he has raised it. 
(Maxwell 1873, 162–63)

Maxwell’s observation about Ampère is reminiscent of Abel’s (or Jacobi’s) 
comparison of Gauss to a fox erasing its tracks (see note 15).

In his History of the Theories of Aether and Electricity, Sir Edmund Whit-
taker used a scaffolding metaphor to describe some of Maxwell’s own work. 
After discussing the paper in which Maxwell (1861–1862) first published what 
in hindsight we recognize as Maxwell’s equations of electrodynamics (see 
Figure 4.6 in section V for the mechanical model Maxwell used to derive 
those equations), he wrote:

Maxwell’s views were presented in a more developed form in a memoir . . . 
read to the Royal Society in 1864 [Maxwell 1865]; in this the architecture of 
the system was displayed, stripped of the scaffolding by aid of which it had 
been first erected. (Whittaker [1951–1954] 1987, 1:255)

At least one later commentator on Maxwell (1865) used the same metaphor: 
“The scaffolding could now be kicked away from the edifice” (Kargon 1969, 
434).22 To give another example of a historian of science using the metaphor, 
Owen Gingerich (1989, 69), in an article about Kepler, wrote that “both 
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Ptolemy in the Almagest and Copernicus in De Revolutionibus had carefully 
concealed the scaffolding by which they had erected their mathematical 
models.”

For my final example of scientists themselves using the metaphor, I re-
turn to Einstein. In 1953, the year before he died, Einstein compared the ex-
traction of concepts from experience to the construction of houses and 
bridges with the help of a scaffold. In a letter to Maurice Solovine, his old 
friend and fellow member of the mock Olympia Academy of his halcyon days 
as a patent clerk in Berne, he wrote:

Concepts can never be derived logically from experience and be above criti-
cism. But for didactic and also heuristic purposes such a procedure is inevi-
table. Moral: Unless one sins against logic, one generally gets nowhere; or, 
one cannot build a house or construct a bridge without using a scaffold which 
is really not one of its basic parts. (Einstein 1987, 147; cf. Agassi 1975, 456–59)

The point for which Einstein used this metaphor is rather different from the 
one pursued in this paper. It is closer, actually, to the point Bacon, Wittgen-
stein, and others wanted to make with their ladder metaphor (Agassi 1975, 
456–58; cf. section II).

Despite these intriguing passages obtained largely through crowdsourc-
ing (see the acknowledgments), I must admit that I have only found a handful 
of examples so far of historical actors using scaffolding metaphors for the de-
velopment of science. Moreover, I am not aware of any of the actors in my five 
examples using this kind of language. Let me use another analogy to explain 
why I ultimately see this not as a weakness but as a strength of my project.23

Historians are in the business of selecting parts of invariably incomplete 
source material and carefully arranging it in historical narratives to make 
their audience look at it from their point of view. In this respect, historical 
narratives are not unlike museum exhibits of dinosaurs (cf. Figure 4.5).

When mounting a dinosaur for exhibit, curators use several devices 
(often in combination) to create the illusion of a complete animal. First, they 
restore missing or damaged pieces of fossil bone with plaster. Next, they com-
bine complementary specimens of the same species to form a composite 
skeleton. Finally, they make sculptures or casts of any missing elements to 
create a whole animal. To hold the fossil bones in lifelike positions, they al-
ways use some kind of metal armature, or scaffold. Normally, the armature 
is designed to be as unobtrusive as possible to give the museum visitor the 
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impression that the specimen is self-supporting. Eugene S. Richardson, a cu-
rator at the Field Museum in Chicago, wrote a laudatory poem about an 
exhibit of Gorgosaurus, which ends with the following lines: “Here he stands 
without a scaffold! Gorgosaur is self-supporting!” (Brinkman 2013, 223–25).

There is some controversy about the practice of disguising these curato-
rial devices to enhance the illusion. At some museums, restored pieces of fos-
sil bone, or plaster casts of fossils, have been carefully painted to match the 
original fossil material and to hide its artificial origins. Other museums, by 
contrast, have made their restorations in a different color so that the visitor 
can easily distinguish them from original fossils. Museums will sometimes 
exhibit only original fossil material, restoring the complete animal in a back-
ground mural or a drawing.24

The latter approach, where the curator’s role in reconstructing the 
animal is explicitly acknowledged, corresponds to the approach to writ-
ing history of science that I am adopting in this project. (The approach in 
the papers that I draw on for this project was closer to the former.) Using 
a metaphor that is clearly my own and not an actors’ category to present 

Figure 4.5. Apatosaurus under construction at the Chicago Field Museum in 1908. Courtesy of the 
Field Museum, Chicago. ID No. CSGEO23972. This picture is also reproduced in Brinkman (2010, 244).
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my source material to my readers, I am like the curator whose use of ele-
ments that will not be mistaken for parts of the original specimen forcefully 
reminds visitors of her own role in the reconstruction of the specimen.

IV. Five Examples from the Development of  
Relativity and Quantum Theory

I have identified five instances of major theory change in the history of rela-
tivity and quantum theory that fit the arch-and-scaffold metaphor. In these 
examples, we will encounter two kinds of relations between arch and scaffold, 
which will be examined more generally in sections V–VI. In this section I 
present my five case studies, explain how they fit the metaphor, and indicate 
what we gain, in terms of our historical understanding of these episodes, by 
recasting their narratives in terms of it.25 To do so, I need to cover these 
examples in some detail. At sufficiently low resolution just about any epi-
sode in the history of science can be made to fit just about any metaphor. It 
is thus imperative to show that the arch-and-scaffold metaphor captures 
such episodes at a much more fine-grained level.

I have tried to write this section without presupposing any knowledge of 
the relevant physics. Even so, readers who are familiar with (the history of ) 
relativity and quantum theory will undoubtedly find this section much eas-
ier to read than readers who are not. Those without a background in physics 
are encouraged to read as much as they can stomach of the first, the third, 
and the fourth case study and skim or skip only the mathematically more 
demanding (parts of) the second and the fifth. A detailed understanding of 
section IV is not required to appreciate the more general points about the 
use of the arch-and-scaffold metaphor in the history of science in sections V 
and VI.

How Minkowski Space-Time Was Scaffolded by  
Lorentz’s Theorem of Corresponding States26

The natural starting point for a history of special relativity in terms of arches 
and scaffolds is the lecture “Space and Time” by the Göttingen mathemati-
cian Hermann Minkowski (1909). Minkowski gave this lecture at the 1908 
Naturforscherversammlung held that year in Cologne. It was published post-
humously the following year. Minkowski began his lecture by proclaiming 
that
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henceforth space by itself, and time by itself, are doomed to fade away into 
mere shadows, and only a kind of union of the two will preserve an indepen-
dent reality. (Minkowski 1909, 75)

He proceeded to develop the now familiar geometry of what has come to be 
known as Minkowski space-time, the space-time structure of the special 
theory of relativity. Although it only got its name later, this is the theory in-
troduced in the most famous paper of Einstein’s annus mirabilis (Einstein 
1905). Minkowski showed that the transformations that relate the space-time 
coordinates of one reference frame in Minkowski space-time to the space-
time coordinates of another reference frame in uniform motion with re-
spect to the first are completely analogous to the transformations that relate 
the Cartesian coordinates with respect to one set of orthogonal axes in or-
dinary Euclidean space to the Cartesian coordinates with respect to an-
other set of orthogonal axes rotated with respect to the first. In fact, such 
rotations in three-dimensional Euclidean space can be subsumed under 
Lorentz transformations in four-dimensional Minkowski space-time.

How did Minkowski build this magnificent arch? As he made clear in his 
lecture, he used a scaffold provided by recent work in electrodynamics. 
However, he also imagined a scenario in which the arch would have been 
built without a scaffold or, better perhaps, a different scaffold, provided by 
Newtonian mechanics rather than Maxwellian electrodynamics.27 The equa-
tions of Newtonian mechanics, he noted, “exhibit a two-fold invariance” 
(Minkowski 1909, 75). They do not change when we rotate the axes of our 
spatial coordinate system or when we set that spatial coordinate system in 
motion with a constant velocity. The latter invariance expresses the princi-
ple of relativity in Newtonian mechanics (Einstein extended this principle 
from mechanics to all of physics, especially electrodynamics). In Newto-
nian theory, Minkowski noted, these two operations

lead their lives entirely apart. Their utterly heterogeneous character may have 
discouraged any attempt to compound them. But it is precisely when they are 
compounded that the complete group, as a whole, gives us to think. (Minkowski 
1909, 76)

“The thought might have struck some mathematician,” Minkowski 
mused, that maybe Newton’s theory, invariant under rotations and under 
transformations from one inertial frame to another (now called Galilean 
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transformations to distinguish them from Lorentz transformations), ought to 
be replaced by a theory based on invariance under Lorentz transforma-
tions. In this way mathematicians might have anticipated special relativity. 
“Such a premonition,” Minkowski continued, “would have been an extraor-
dinary triumph of pure mathematics.” Alas, this possibility had not occurred 
to any mathematician, including Minkowski himself, before physicists had 
recognized the importance of Lorentz transformations in electrodynamics. 
He consoled himself with the thought that “mathematics, though it now can 
display only staircase-wit,28 has the satisfaction of being wise after the event” 
(Minkowski 1909, 79).

In the opening sentence of his lecture, Minkowski had already identified 
the actual source of his insight into the importance of Lorentz transforma-
tions: “The views of space and time which I wish to lay before you have sprung 
from the soil of experimental physics, and therein lies their strength.” “They 
are radical,” he continued, before warning his audience that the old concepts 
of space and time were “doomed to fade away into mere shadows.” Minkowski 
thus emphasized the discontinuity in the transition from the old to the new 
views of space and time. At the same time, a certain continuity is suggested 
by his acknowledgment that these new views sprang “from the soil of experi-
mental physics.”

At the end of the lecture, he returned to this point, locating the germ of 
his new views in the theoretical tools for cultivating the “soil of experimen-
tal physics” developed by Einstein and the Dutch physicist Hendrik Antoon 
Lorentz. In the course of his lecture, Minkowski had introduced what he 
called the “world postulate,” which basically says that we live in a four-
dimensional world that can be described in infinitely many equivalent 
space-time coordinate systems all related to each other via Lorentz trans-
formations. In the conclusion, he wrote:

The validity without exception of the world-postulate, I like to think, is the 
true nucleus of an electromagnetic image of the world, [a nucleus29] which, 
discovered by Lorentz and further revealed by Einstein, now lies open in the 
full light of day. (Minkowski 1909, 91)

Lorentz had been the first to show that Maxwell’s equations for electric and 
magnetic fields are invariant under Lorentz transformations (Janssen 2017). 
Initially, he could only do this to a good approximation and for a restricted 
class of charge distributions acting as sources of the fields (Lorentz 1895). 
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Eventually, he could do it exactly and for arbitrary charge distributions 
(Lorentz 1904, 1916). Lorentz referred to this result as his “theorem of corre
sponding states.” A pair of corresponding states consists of two physical 
systems in the ether, the nineteenth-century medium serving as the carrier 
of light waves and electric and magnetic fields, one at rest, the other in uni-
form motion. The quantities pertaining to the system in motion are related 
to those pertaining to the system at rest by a Lorentz transformation, the 
name given to these transformations by the French mathematician Henri 
Poincaré.

Poincaré and Einstein recognized that quantities for the system in mo-
tion in Lorentz’s theorem of corresponding states are the space-time coor-
dinates and the components of the electric and magnetic fields measured by 
an observer moving with the system. Before the advent of special relativity, 
Lorentz himself saw these quantities as nothing but auxiliary variables in 
terms of which the system in motion could be described in the same way as 
the corresponding system at rest in terms of the real quantities. Lorentz could 
show that the same measurement performed on two systems forming a pair 
of corresponding states would give the same result in a broad class of opti-
cal experiments. On the further assumption that, when set in motion with 
respect to the ether, the system at rest turns into the corresponding moving 
system, Lorentz could use his theorem to explain the negative results of many 
experiments aimed at detecting the earth’s motion through the ether, includ-
ing the famous 1887 Michelson-Morley experiment.

This additional assumption, however, is not as innocuous as it looks. It 
boils down to the assumption that the laws governing the material objects 
with which light waves interact in optical experiments (mirrors, lenses, 
screens, etc.) are all invariant under Lorentz transformations, just as Max-
well’s equations governing the electric and magnetic fields making up the 
light waves themselves. As long as Lorentz invariance was restricted to the 
laws governing the fields, one could think of it as a special property of Max-
well’s equations. This, of course, was precisely how Lorentz had discovered 
Lorentz invariance in the first place. The negative results of many ether-drift 
experiments suggested that it was a much more general property, common 
to all laws of physics. One way to avoid this conclusion was to assume that 
all laws of physics could eventually be reduced to the laws of electrodynam-
ics. This view was promoted by German physicists such as Wilhelm Wien 
and Max Abraham in the early years of the twentieth century (Janssen and 
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Mecklenburg 2007). For several years this so-called electromagnetic view of 
nature was seen as the cutting edge in theoretical physics research. This is 
what Minkowski is referring to as the “electromagnetic image of the world” 
in the passage from his 1908 Cologne lecture quoted above. Minkowski had 
been an early supporter of the electromagnetic worldview but by 1908, as this 
same passage shows, he had distanced himself from it, supporting Einstein’s 
special theory of relativity instead (Janssen 2009, 39).

Although the title of his paper, “On the Electrodynamics of Moving 
Bodies,” suggests otherwise, Einstein, like Minkowski, recognized that 
Lorentz invariance has nothing to do with the particulars of electromagne-
tism but reflects a new space-time structure. In a letter of February 19, 1955, 
to Carl Seelig, one of his early biographers, he succinctly described the main 
novelty of special relativity as his “realization that the Lorentz transforma-
tion transcends its connection with Maxwell’s equations and has to do with 
the nature of space and time in general” (Janssen 2009, 41). Minkowski, as we 
saw, reached the same conclusion and rephrased it in geometrical terms, 
identifying his “world-postulate” as “the true nucleus” of the electromagnetic 
world picture.

The relation between arch and scaffold is pretty straightforward in this 
case. Lorentz invariance is the key structural element shared by arch and 
scaffold. In the scaffold, Lorentz invariance is tied to electromagnetism. 
We get from scaffold to arch in this case by recognizing, as Einstein and 
Minkowski did, that Lorentz invariance has nothing to do with electromag-
netism per se but is a property of all laws governing systems in Minkowski 
space-time, the new space-time structure of special relativity. The Lorentz 
invariance of the laws reflects the symmetry of this space-time structure. It 
took a few years for physicists to distinguish between the Lorentz and the 
Einstein-Minkowski interpretation of Lorentz invariance (the two interpre-
tations are empirically equivalent), but eventually, the latter prevailed. For 
physicists using Minkowski space-time today, the only thing left to remind 
them that it was scaffolded by Lorentz’s theorem of corresponding states is 
that the transformations between different perspectives on the arch are 
named after the man responsible for the scaffold.

Note how easy it was to tell this story backward in time, starting with 
Minkowski’s geometrical interpretation of Lorentz invariance and ending 
with Lorentz’s original interpretation of it in the context of electrodynamics. 
Also note that Minkowski’s contribution might alternatively be characterized 
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in terms of Hilbert’s “build first and worry about the foundations later” 
metaphor (see section II). In that version of the story, Minkowski would be 
the mathematician who provided more secure foundations for the electro-
magnetic worldview of the physicist Abraham.

How Laue’s Relativistic Continuum Mechanics Was Scaffolded  
by Abraham’s Electromagnetic Mechanics30

Work in the history of special relativity typically focuses on how the theory 
changed our concepts of space and time. Special relativity, however, involved 
much more than the introduction of a new space-time structure and some 
minor adjustments to the laws of Newtonian mechanics to make them Lo-
rentz invariant (such as the insertion of factors of  in various 
equations, where ν is the relative velocity of two inertial frames, and c is the 
velocity of light). For one thing, the theory required the general relation 
between energy and mass (or inertia) expressed in its most famous equa-
tion, E = mc2. It also required a “mechanics”—in the sense of a general 
framework for doing physics (cf. the term quantum mechanics)—of fields 
rather than particles.

In the years just prior to the arrival of special relativity, Abraham and 
others had developed such a mechanics for the special case of electromagnetic 
fields (Abraham 1903). It provided the foundation of the electromagnetic 
worldview, the attempt to reduce all of physics to electrodynamics. Inso-
far as the electromagnetic worldview is covered at all in histories of special 
relativity, it is typically presented, implicitly or explicitly, as a research pro-
gram that was briefly considered cutting edge at the beginning of the 
twentieth century but was then vanquished by special relativity.31

However, as Einstein, for one, clearly recognized, it is more accurate to 
say that it was co-opted by special relativity. Within a few years of the intro-
duction of special relativity, the electromagnetic mechanics of Abraham had 
morphed into the relativistic continuum mechanics presented in the first 
textbook on relativity (Laue 1911). Max Laue basically obtained his relativistic 
mechanics for fields by taking Abraham’s electromagnetic mechanics, rewrit-
ing it in terms of the four-dimensional formalism developed by Minkowski 
and Sommerfeld, and stripping it of its electromagnetic particulars.

The arch-and-scaffold metaphor captures this development in a natural 
way. It underscores the importance of the formulation of relativistic contin-
uum mechanics in the development of special relativity by making it—to 
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use the terms introduced in Figure 4.1—the keystone of the arch for which 
Minkowski had provided the springers.

The backward-looking perspective is especially important in this case. 
If the developments are covered forward in time, it is hard to bring out those 
features of the electromagnetic program that proved most relevant for 
the formulation of relativistic continuum mechanics without the account be-
coming blatantly Whiggish. Put differently, and as illustrated by the histo-
riographically impeccable coverage of this episode by Richard Staley (2008, 
chapters 6–7), Whiggishness can be avoided only at the price of obscuring 
what in hindsight were the most salient elements of the electromagnetic pro-
gram and how they were incorporated into special relativity.

The clearest way to bring out these elements is to rewrite some of the 
equations of the electromagnetic program in terms of the formalism of 
Minkowski, Sommerfeld, and Laue. The proponents of the electromagnetic 
program wrote their equations in terms of vectors, with the usual three (spa-
tial) components and tensors one can think of as three-by-three matrices, 
and they handled spatial and temporal derivatives separately. The relativists 
grouped quantities into vectors with four space-time components and tensors 
one can think of as four-by-four matrices, and they put spatial and temporal 
derivatives on equal footing.

It will be instructive to look at this in a little more detail. Abraham re-
placed the energy and momentum of particles of Newtonian mechanics, 
with definite positions in space, by the energy density and momentum 
density of electromagnetic fields, spread out all over space. The x-, y-, and 
z-components of the electromagnetic momentum density he introduced 
are proportional to the electromagnetic energy flow density in the x-, y-, 
and z-direction. The electromagnetic energy flow density in turn is given 
by the Poynting vector, the cross product of the electric and the magnetic 
field and the main claim to fame of the physicist we already encountered in 
section III.

Central to Abraham’s efforts to reduce mechanics to electrodynamics was 
his attempt to eliminate the Newtonian concept of mass by replacing the in-
ertial force on a massive particle by the force exerted on a massless charge 
distribution by the electromagnetic field generated by that charge distribu-
tion itself. The interaction of massless charges with these self-fields thus mim-
ics inertial mass (those with limited tolerance for equations can skip ahead 
to the quotation following Equation (5)).
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Abraham showed that the components  (with i = 1, 2, 3 labeling x-, 
y-, and z-components) of the density of the electromagnetic force exerted by 
a charge distribution’s self-field can be written as minus the time derivative 
of the components of its electromagnetic momentum density and the diver-
gence (a sum of spatial derivatives) of its stress-energy density, given by the 
so-called Maxwell stress tensor. This tensor can be thought of as a three-
by-three matrix. Its nine components represent the flow of the x-, y-, and 
z-components of the electromagnetic momentum density in the x-, y-, and 
z-direction. Like the electromagnetic momentum density, the components 
of the Maxwell stress tensor are functions of the components of the electric 
and magnetic fields.

In modern notation,  can be written as

	 	 (1)

where  is the i-component of the electromagnetic momentum of the 
charge distribution’s self-field, and  is the ij-component of its Max-
well stress tensor.32

The energy density, the three components of the momentum density, the 
three components of the energy flow density, and the nine components of 
the momentum flow density make for a total of sixteen components. In spe-
cial relativity, they are combined (with an extra factor of c here and there) 
to give the sixteen components of the energy-momentum tensor Tμν (with 
μ, ν = 0, 1, 2, 3 corresponding to one time and three spatial components).33 
This tensor can be thought of as a four-by-four matrix, with the first index 
labeling the rows and the second index labeling the columns. Its compo-
nents are:

	
	

(2)
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The energy-momentum tensor is symmetric in its indices—that is, Tμν = Tνμ 
In other words, the matrix representing Tμν stays the same if we switch rows 
and columns. Focusing on the first row and the first column, we have 
Ti0 = T0i, from which it follows that

momentum density = energy flow density ÷ c2.

As was first realized by Planck (1906), this is an elegant way of expressing 
E = mc2 in the four-dimensional formalism.

Equation (1) for the components  of the electromagnetic force den-
sity, the rate of change of the momentum density of the self-field, can be 
combined with a similar equation for  the rate of change of the 
energy density of the self-field. This combination can be written compactly 
in terms of the components of the energy-momentum tensor,  for the 
charge distribution’s self-field:

	 	 (3)

where the four components of the electromagnetic four-force density 
 are  and  (i = 1, 2, 3) and where xμ ≡ (ct, x, y, z). The final 

expression in Equation (3) is called the four-divergence of the energy-
momentum tensor 

In relativistic continuum mechanics, this equation is generalized from 
the electromagnetic field to arbitrary spatially extended systems. The sub-
script “EM” in Equation (3) can thus be dropped. Using the so-called Ein-
stein summation convention, which says that any index occurring twice in 
the same expression (once “upstairs” and once “downstairs”) is summed over, 
we can also drop the summation sign. Finally, we introduce the abbrevia-
tion ∂μ ≡ ∂/∂xμ and arrive at:
	 	

(4)

In general there will be an external four-force density with components 
 acting on the system as well as the four-force density with components  

that the system exerts on itself. The basic equation of motion for the system 
says that the sum of these force densities vanishes everywhere—that is, 

 Using Equation (4) for  we can write this equation as

	 	 (5)

This is the fundamental law of relativistic continuum mechanics.
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As Einstein wrote in an unpublished review article on special relativity 
in 1912:

The general validity of the conservation laws [of energy and momentum] 
and the law of the inertia of energy [E = mc2] suggests that [the energy-
momentum tensor (2) and the force equation (5)] are to be ascribed a general 
significance, even though they were obtained in a very special case [i.e., 
electrodynamics]. We owe this generalization, which is the most important 
new advance in the theory of relativity, to the investigations of Minkowski, 
Abraham, Planck, and Laue. (Einstein 1987–2018, vol. 4:92; cf. Janssen and 
Mecklenburg 2007, 110)

Note that Abraham, the undisputed leader of the electromagnetic program 
and a staunch opponent of special relativity, is mentioned here in the same 
breath as Minkowski, Planck, and Laue. Abraham richly deserved to be men-
tioned alongside this trio of enthusiastic supporters of special relativity. His 
electromagnetic mechanics provided the scaffold on which Laue built the 
arch of relativistic continuum mechanics.

The relation between scaffold and arch in this case is the same as in my 
first example. The scaffold exhibits the structure of the arch for the special 
case of electromagnetism. Once again, the arch is thus obtained by stripping 
the scaffold of its electromagnetic particulars. The comparison of the equa-
tions of the electromagnetic view of nature and relativistic continuum me-
chanics also highlights a different aspect of the relation between arch and 
scaffold in both these examples. The step from scaffold to arch in both cases 
also involved grouping various quantities defined in three-dimensional space 
(scalars, vectors, and tensors) into quantities defined in four-dimensional 
space-time.

Another passage from Einstein’s 1912 review article provides the natu-
ral starting point for telling the story about the transition from Abraham’s 
electromagnetic mechanics to Laue’s relativistic continuum mechanics back-
ward in time. Einstein gave the following concise characterization of how 
one applies the latter:

To every kind of material process we want to study, we have to assign a sym-
metric tensor (Tμν), whose components have the physical meaning given in 
[Equation (2)]. [Equation (5)] must always be satisfied. The problem to be 
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solved always consists in finding out how (Tμν) is to be formed from the vari-
ables characterizing the processes under consideration. If several processes 
take place in the same region that can be isolated in the energy-momentum 
balance, we have to assign to each individual process its own stress-energy 
tensor ( )

,
 etc., and set (Tμν) equal to the sum of these individual tensors. 

(Einstein 1987–2018, vol. 4:92)

The question to which the arch-and-scaffold narrative then provides the 
answer is: How did physicists go from Newtonian particle mechanics to 
relativistic continuum mechanics as a general framework for doing physics. 
In other words, how did they go from writing down the forces acting on 
some collection of bodies and using Newton’s second law, F = ma, to solve 
for the motion of these bodies to writing down the energy-momentum ten-
sors for various processes occurring in some region of space-time and 
setting the four-divergence of their sum,  equal to the 
external four-force density, 

One final question that needs to be answered about this episode is why 
the new relativistic mechanics, despite being identified by Einstein as “the 
most important new advance in the theory of relativity,” did not catch on in 
the physics community of the early 1910s. The short answer: because of quan-
tum theory. Only two years after Laue published his relativity textbook, in 
which relativistic continuum mechanics takes center stage, Niels Bohr (1913) 
proposed his model of the hydrogen atom based on nonrelativistic Newto-
nian particle mechanics. This model was further developed in the old quan-
tum theory of Bohr and Sommerfeld (Kragh 2012; Eckert 2014). The old 
quantum theory gave Newtonian mechanics, especially Newtonian celestial 
mechanics, a new lease on life. Sommerfeld used relativistic particle mechan-
ics to explain the fine structure of spectral lines, but the old quantum the-
ory had no use for relativistic continuum mechanics. The latter only played 
a role in the development of general relativity, the topic of my next example.

How the Field Equations of General Relativity Were Scaffolded  
by the Field Equations of the Earlier Entwurf Theory 34

In 1907, only two years after he published the special theory of relativity, Ein-
stein, still a patent clerk in Berne, started thinking about a generalization of 
the theory that would incorporate gravity. By 1911, when he was appointed 
full professor in Prague, he had arrived at the basic idea of his general theory 
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of relativity. Contrary to what its name suggests, this theory does not ex-
tend the principle of relativity from uniform to nonuniform motion (Janssen 
2014), but it does weave gravity into the fabric of space-time. In general rela-
tivity, gravity is represented by space-time curvature. Free-falling bodies 
(i.e., particles subject to no other forces than gravity) will follow the 
straightest possible paths in these curved space-times. Such paths are called 
geodesics and satisfy the geodesic equation.35

This much was already becoming clear to Einstein when he returned 
from Prague to Zurich in 1912 and began working in earnest on his new 
theory of gravity with the help of his new colleague at the Federal Institute of 
Technology (ETH), Marcel Grossmann. Grossmann introduced Einstein to 
the elegant mathematics of Bernard Riemann, Elwin Bruno Christoffel, Gre-
gorio Ricci-Curbastro, and others needed for the formulation of the kind of 
theory Einstein was after. The two of them had been classmates at what had 
then still been called the Federal Polytechnic back in the late 1890s. Gross-
mann had become professor of mathematics at their alma mater in 1907. 
Their collaboration, recorded in Einstein’s famous Zurich notebook (Renn 
2007, vols. 1–2), resulted in a joint paper published in the spring of 1913 
(Einstein and Grossmann 1913). Its title modestly announced an “outline” 
(Entwurf) of a new theory of gravity and a generalized theory of relativity. 
Historians refer to it as the Entwurf theory.

The Entwurf theory already put in place most of the formalism of the gen-
eral theory of relativity, which Einstein completed two and a half years later, 
in November 1915, in four short communications to the Prussian Academy 
in Berlin (Einstein 1915a, 1915b, 1915c, 1915d). In March 1914, he had left 
Zurich to take up a prestigious appointment in the German capital. In his 
papers of November 1915, Einstein basically changed only one important ele
ment of the Entwurf theory: its field equations.

The field equations, as the reader may recall from section III, determine 
how matter curves space-time. (It is customary to use the plural equations 
even though they can be written as one equation because this one equation 
has several components.) It was clear that matter had to be represented by 
its energy-momentum tensor (cf. the preceding case study). This tensor ap-
pears on the right-hand side of the field equations. The difference between 
the field equations of 1913 and 1915 was the left-hand side. In his first No-
vember paper, Einstein claimed that he and Grossmann had already consid-
ered the new candidate for the left-hand side three years earlier. The Zurich 
notebook confirms this. The notebook shows how mathematical consider-
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ations, supplied by Grossmann, had led Einstein to this elegant candidate 
and how he had abandoned it because it looked as if the resulting field equa-
tions did not reduce to the equations of Newtonian theory in the appropriate 
limit and were incompatible with energy-momentum conservation. Einstein 
thereupon switched from a mathematical to a physical strategy. Exploiting 
the analogy with the Maxwell-Lorentz theory for the electromagnetic field 
(rewritten in the four-dimensional formalism of Minkowski, Sommerfeld, 
and Laue), he constructed field equations for the gravitational field guaran-
teed to satisfy energy-momentum conservation and to have the correct New-
tonian limit. These are the field equations published in the Entwurf paper.

In the introduction of his first paper of November 1915, Einstein made it 
sound as if he had suddenly turned his back on the physical strategy that had 
led him to the Entwurf field equations and gone back to the mathematical 
strategy that had originally led him to the field equations with which he now 
proposed to replace them. Subsequent sections of the paper make it clear that 
this was, at best, an exaggeration. Einstein relied heavily on lessons learned 
pursuing the physical strategy over the preceding two and a half years to 
show that these resurrected field equations passed muster on the counts of 
energy-momentum conservation and the Newtonian limit on which they had 
failed earlier. To put it in terms of the arch-and-scaffold metaphor: Einstein 
may already have envisioned the arch in 1913, but the confidence to put 
weight on it only came in November 1915.36

Closer examination of both the first November paper and Einstein’s cor-
respondence at the time makes it doubtful that there was an eleventh-hour 
return to the mathematical strategy and strongly suggests that, instead, it 
was his dogged pursuit of the physical strategy that led Einstein back to the 
field equations to which the mathematical strategy had already led him in 
the Zurich notebook. As Jürgen Renn and I have argued in detail, Einstein 
used the Entwurf field equations as a scaffold to construct the field equations 
with which he replaced them in his first paper of November 1915 (Janssen 
and Renn 2015, 2019).

By late 1914, Einstein had perfected the analogy between the Maxwell-
Lorentz theory for the electromagnetic field and the Entwurf theory for the 
gravitational field. He convinced himself that the formalism he had devel-
oped relying on this analogy uniquely determined the field equations and 
that these were the Entwurf field equations. Satisfied that his arch was now 
complete, he published a lengthy review article on his theory. The title no 
longer talks about an “outline” of a “generalized” theory of relativity but 
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promises nothing less than the “formal foundation of the general theory of 
relativity” (Einstein 1914).

In October 1915, Einstein discovered, to his dismay, that his uniqueness 
argument for the Entwurf field equations was fallacious. Rather than aban-
doning his general formalism—or tearing down his house, to use the meta-
phor of Kuhn’s Guggenheim application quoted in section II—Einstein 
merely replaced the definition of the gravitational field in the Entwurf theory 
by what seemed to be the only other physically plausible candidate, the so-
called Christoffel symbols. Inserting this new definition into his general 
formalism, he ended up with the same equations that he had rejected in the 
Zurich notebook, thereby reestablishing the connection between his theory 
and the elegant mathematics that, as Einstein (1915a, 778) noted in his first 
November 1915 paper, he and Grossmann had abandoned “with a heavy 
heart” in 1913. The general formalism developed for the Entwurf theory pro-
vided a number of relations, the counterparts of similar relations for the 
electromagnetic field, that the gravitational field had to satisfy to be accept-
able from a physics point of view. These relations continued to hold when 
the old definition of the gravitational field was replaced by the new one. This, 
then, is how Einstein got from scaffold to arch. By changing the definition 
of the gravitational field, he swapped out one building block for another, con-
fident that the structure he had erected with the old building blocks would 
remain stable upon this substitution.37

Einstein himself identified this as the crucial step in the transition from 
the Entwurf field equations to the field equations of his first November 
paper. In the paper, he called the new definition of the gravitational field “the 
key to the solution.” In the letter to Sommerfeld from which I already quoted 
in note 36, he called the old definition “a fateful prejudice” (Janssen and Renn 
2007, 859, 875–79).

Worried that Hilbert might beat him to the punch, Einstein rushed his 
new field equations into print. Over the next three weeks, he continued to 
tweak them. Throughout this period Einstein was laboring under the mis-
conception that the extent to which his theory generalized the principle of 
relativity from uniform to nonuniform motion is directly related to the de-
gree of covariance of its equations—that is, to the size of the class of coordi-
nate transformations under which the equations retain their form. The 
covariance of the field equations of his first November paper was much 
broader than that of the Entwurf field equations, but they were still not gen-
erally covariant—that is, they do not retain their form under arbitrary coor-
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dinate transformations. Einstein quickly realized, however, that with 
relatively minor modifications these new field equations could be turned into 
generally covariant field equations that just happened to be written in a spe-
cial form in which their general covariance is not immediately apparent.

In his second November paper, he proposed one such modification, only 
to replace it with another, more satisfactory, one in the fourth (Einstein 1915b, 
1915d). The latter modification was to add a term with the so-called trace of 
the energy-momentum tensor (the sum of the terms on the diagonal in Equa-
tion (2)) on the right-hand side of the field equations. This trace term is 
necessary to ensure that the quantity representing the energy-momentum 
density of the gravitational field enters the field equations in the exact same 
way as the energy-momentum tensor for matter. Since this was a require-
ment that had been one of Einstein’s guiding principles, he was now confi-
dent that no further corrections would be needed. The amended equations 
of this fourth and final communication to the Berlin Academy of Novem-
ber 1915 are the Einstein field equations used to this day.38 The trace term 
formed the keystone of what is widely admired as the most marvelous arch 
Einstein left us.

Einstein still had to write his field equations in a form in which they only 
retain their form under a restricted class of coordinate transformations, as 
this was the only way in which he could connect them to the general for-
malism for the Entwurf theory and show that they were compatible with 
energy-momentum conservation. As a result, the arch unveiled in Einstein’s 
papers of November 1915 still showed clear traces of the scaffold used to build 
it. The same is true for the section on the field equations in the review article 
that Einstein (1916a) published in May the following year to replace the pre-
mature review article of late 1914. It was only in a short paper published in 
November that year that Einstein (1916b) finally removed all traces of the 
Entwurf scaffold.

A natural starting point for telling this story backward in time is to be-
gin with Einstein’s later recollections of how he found the field equations of 
general relativity. This is the approach Jürgen Renn and I took in a talk we 
have given in various places based on our article in Physics Today (Janssen 
and Renn 2015).39 The older Einstein routinely claimed that he had found 
the Einstein field equations following the mathematical strategy. Some com-
mentators, notably John Norton (2000), have taken him at his word. Renn 
and I concur with the conclusion of Jeroen van Dongen’s (2010) study of 
Einstein’s unified field theory program that these statements should be 
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seen, first and foremost, as propaganda for this program. In his ultimately 
fruitless pursuit of a classical field theory unifying general relativity and 
electromagnetism, Einstein relied on a purely mathematical strategy. It served 
his purposes to suggest that this approach could boast of at least one spec-
tacular success, the discovery of the Einstein field equations.

An arch-and-scaffold narrative working backward from these later pro-
nouncements by Einstein reveals that, while supported by several passages 
in his writings and correspondence from the gestation period of general rela-
tivity, they do not square with the full range of textual evidence available. 
The arch-and-scaffold metaphor can be used to put the physical strategy, 
suppressed in Einstein’s later recollections, in sharp relief, which makes it 
easier to compare competing accounts of how Einstein found his field equa-
tions in the fall of 1915, the account of Janssen and Renn (2007), in which 
Einstein stuck to the physical strategy, and the classic account of Norton 
(1984), in which he switched to the mathematical strategy.40

The clarification of the difference between the two strategies Einstein 
used in his search for the field equations of general relativity may shed light 
on at least two other issues in modern history and philosophy of physics. The 
first concerns the interpretation of general relativity (Lehmkuhl 2014). Should 
one think of it in analogy with electrodynamics as the theory of a particular 
field, as the physical strategy suggests, or should one think of it as a theory 
about geometry, as the mathematical strategy suggests?41 The second issue 
is about methodology in physics. On the face of it, Einstein’s own later ac-
count of how he found the field equations of general relativity in 1913–1915 
is strong testimony in support of a purely mathematical approach to theory 
construction. This approach remains popular to this day in certain quarters 
of the physics community. An account of this episode that emphasizes the 
importance of the physical strategy, conveyed concisely with the help of 
the arch-and-scaffold metaphor, can likewise serve as powerful counter-
testimony.

How the Matrix Mechanics of Heisenberg, Born, and Jordan Was 
Scaffolded by the Kramers Dispersion Formula42

The paper known as the Umdeutung (Reinterpretation) paper, with which 
Werner Heisenberg (1925) laid the foundation for matrix mechanics, draws 
on an earlier paper he wrote as the junior coauthor of Bohr’s right-hand man 
in Copenhagen at the time, the Dutch physicist Hans Kramers. This paper 
by Kramers and Heisenberg (1925) provides a detailed derivation and further 
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exploration of a new quantum formula for optical dispersion that Kramers 
(1924a, 1924b) had proposed in two short notes in Nature the year before. 
Max Dresden (1987, 275), Kramers’s biographer, goes so far as calling this 
paper “the direct, immediate, and exclusive precursor to the Heisenberg 
paper on matrix mechanics.” Recent work by Alex Blum, Martin Jähnert, 
Christoph Lehner, and Jürgen Renn (2017) at the Max Planck Institute for 
the History of Science in Berlin suggests that the Umdeutung paper owes as 
much, if not more, to work on intensities in multiplet spectra.43 The work on 
dispersion theory, however, remains an important strand in the genealogy of 
the Umdeutung paper. This strand is nicely captured by the arch-and-scaffold 
metaphor. Blum et al. (2017, 4n3) find this to be true for the multiplet strand 
as well.

Optical dispersion is the phenomenon, familiar from rainbows and 
prisms, that the refraction of light in an optical medium depends on its color. 
Although it already occupied the minds of Descartes and Newton, it was not 
until two centuries later that a halfway satisfactory theory of the phenome-
non was formulated.44 Particularly challenging was a puzzling feature dis-
covered by early pioneers of photography in the 1840s. Normally, the index 
of refraction increases with the frequency of the refracted light. Blue light is 
refracted more strongly than red light. However, in narrow frequency bands 
around the absorption frequencies of an optical medium, the index of re-
fraction decreases with increasing frequency in some materials. This is 
called anomalous dispersion. In the 1870s, Wolfgang Sellmeier and others 
introduced a new generation of dispersion theories that could account for 
this phenomenon. The characteristic feature of this new class of theories is 
that optical media contain small oscillators with resonance frequencies at the 
absorption frequencies of the material. These theories correctly predict that 
dispersion becomes anomalous in the vicinity of these resonance fre-
quencies. In the 1890s, Hermann von Helmholtz, Lorentz, and Paul Drude 
reformulated these originally purely mechanical theories in terms of elec-
tromagnetic waves interacting with electrically charged oscillators, soon to 
be identified as electrons. Such harmonically bound electrons were some-
times called dispersion electrons.

These classical dispersion theories were incompatible with Bohr’s (1913) 
atomic model. In this model, electrons orbit the nucleus the way planets orbit 
the sun, except that in the atom only a discrete set of orbits are allowed, la-
beled by integer-valued quantum numbers. A straightforward adaptation of 
the classical dispersion formula to Bohr’s new atomic model would have 
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been to replace the oscillation frequencies of the harmonically bound dis-
persion electrons in the former by the orbital frequencies of the planetary 
electrons in the latter. This was not an option. The problem is that, in gen-
eral, these orbital frequencies differ sharply from the atom’s absorption fre-
quencies. Light is absorbed or emitted in a Bohr atom when an electron jumps 
from one orbit to another. The frequency of the absorbed or emitted radia-
tion is determined not by the orbital frequencies of either of these orbits but 
by the energy difference between them. Only in the limit in which the quan-
tum numbers labeling the orbits get very large do the radiation frequencies 
coincide with the orbital frequencies. Simply replacing oscillation frequencies 
by orbital frequencies would thus lead to a theory predicting anomalous dis-
persion at the wrong frequencies.

While this posed a serious problem for Bohr’s atomic model and the old 
quantum theory that grew out of it, the classical dispersion theory also faced 
a serious problem, which could actually be solved with some of the resources 
provided by the old quantum theory. Experimentalists had found puzzling 
values for an important set of free parameters of the classical theory, the so-
called oscillator strengths. In the classical theory, the oscillator strength for 
a particular resonance frequency is the number of dispersion electrons per 
atom with that resonance frequency. Intuitively, one would expect these 
numbers to be in the single digits—a few dispersion electrons with the 
same resonance frequency per atom—but the values giving the best fit with 
the data tended to be much lower. It was not uncommon to find values as 
low as one dispersion electron with a particular resonance frequency per 
hundreds or even tens of thousands of atoms.

The German experimentalist Rudolf Ladenburg (1921) reinterpreted 
these parameters in a way that such low values were only to be expected. The 
oscillator strength does not, Ladenburg suggested, represent the number of 
electrons with a particular resonance frequency but the number of electron 
jumps between two orbits associated with the absorption of radiation at that 
frequency. Ladenburg set the number of jumps equal to the product of the 
occupation number of the initial orbit (the fraction of the total number of 
electrons in that orbit) and the probability that an electron in that initial 
orbit would jump to the final orbit. For these probabilities he used the prob-
ability coefficients for transitions between different quantum states intro-
duced by Einstein (1917a). Replacing numbers of electrons by products of 
occupation numbers and transition probabilities, Ladenburg turned the 
classical dispersion formula into a new quantum formula.
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The formula still had two limitations. First, it was restricted to situations 
in which electrons would jump to and from their ground state, the orbit of 
lowest energy. Second, Ladenburg could still not explain why dispersion is 
anomalous at the absorption frequencies. He just retained this feature of 
the classical formula, as it was clearly borne out by the experimental data. 
In a follow-up paper, Ladenburg and Fritz Reiche, a theoretical physicist, 
introduced the notion of substitute oscillators (Ersatzoszillatoren) operating 
between two orbits and with resonance frequencies equal to the absorp-
tion frequencies associated with transitions between them (Ladenburg and 
Reiche 1923). If one thought of these substitute oscillators as the conduits of 
dispersion, one at least had some way of understanding why dispersion is 
anomalous at these transition frequencies.

This is where matters stood when Kramers entered the fray. Most likely 
at the instigation of Bohr (whose doctoral adviser at the University of 
Copenhagen, Christian Christiansen, had done important work on optical 
dispersion), Kramers tried to derive a dispersion formula in the old quantum 
theory modeled on the one given by Ladenburg. The central tool he used 
for this derivation was Bohr’s correspondence principle. In the hands of 
Kramers (1924a, 1924b), Born (1924), and the American theoretical physi-
cist John H. Van Vleck (1924a, 1924b), this principle turned into a powerful 
instrument for generating quantum formulae designed to merge with their 
classical counterparts in the limit of high quantum numbers.45

Using canonical perturbation theory in special momentum and position 
variables known as action-angle variables, a technique originating in celestial 
mechanics, Kramers first derived a formula for dispersion in classical me-
chanics. He then made three substitutions to turn this classical formula into a 
quantum formula. First, he expanded the orbital motion into a Fourier series 
and replaced the squares of the amplitudes of the various Fourier compo-
nents by the Einstein coefficients for transition probabilities. Second, he re-
placed orbital frequencies by radiation frequencies corresponding to 
transitions between orbits. Third, he replaced derivatives with respect to ac-
tion variables by difference quotients. The basic quantization conditions of 
the old quantum theory, which select the allowed electron orbits in an atom, 
set such action variables equal to an integral multiple of Planck’s constant h. 
In the limit of high quantum numbers N, where the allowed orbits are getting 
closer and closer together, one can thus approximate a derivative of a quantity 
with respect to an action variable by subtracting that quantity’s value at the 
Nth orbit from its value at the (N + 1)th orbit and dividing the result by h.
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With these three substitutions, the classical dispersion formula Kra- 
mers had derived turned into a quantum formula. Because of the third sub-
stitution, this formula is the difference of two terms. Both have the same 
structure as Ladenburg’s formula. As long as electrons only jump to and from 
their ground state, Kramers’s formula reduces to Ladenburg’s. Kramers’s for-
mula, however, applies to all possible transitions between orbits. Its con-
struction guarantees that it merges with the well-tested classical formula in 
the limit of high quantum numbers. It still required a leap of faith that the 
formula would continue to hold all the way down to the smallest quantum 
numbers, but its agreement with Ladenburg’s formula for the ground state 
was reassuring on that score. In hindsight, Kramers’s faith in his formula 
was well placed. It carries over completely intact to modern quantum me-
chanics and has been fully confirmed experimentally.

The Kramers dispersion formula was incorporated into a short-lived but 
influential quantum theory of radiation proposed by Bohr, Kramers, and 
Slater (1924) and known as the BKS theory. John C. Slater was an American 
postdoc visiting Copenhagen at the time. The substitute oscillators intro-
duced by Ladenburg and Reiche (1923) return in the BKS theory under the 
name virtual oscillators. The BKS theory thus introduces a dual representa-
tion of atoms. To the set of orbits of Bohr’s original theory, the BKS theory 
adds—to use a term introduced by another early quantum theorist, Alfred 
Landé (1926, 456)—an orchestra of virtual oscillators associated with every 
possible transition between those orbits. All information about observable 
quantities—that is, frequencies and intensities of spectral lines, is contained 
in the latter. The Kramers dispersion formula nicely illustrates this: it only 
contains quantities referring to transitions between orbits and makes no ref-
erence whatsoever anymore to individual orbits.

After the examples given in the first three case studies in this section, I 
trust that the reader will have no trouble seeing in the sequence of dispersion 
theories outlined above (Sellmeier, Helmholtz-Lorentz-Drude, Ladenburg-
Reiche, Kramers) how the later theory was scaffolded by the earlier one. But 
how did the Kramers dispersion formula (partly) scaffold Heisenberg’s 
Umdeutung paper? As sketched above, Kramers derived his quantum dis-
persion formula in two steps. First, he derived a formula in classical me-
chanics. Then he used the correspondence principle to translate the result 
into a quantum formula. The fundamental idea of Umdeutung is to use the 
correspondence principle to translate the input rather than the output of 
such classical derivations and do the entire derivation in terms of the new 
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quantum language. This strategy is not limited to the derivation of a for-
mula for dispersion. Heisenberg realized that it could serve as a new frame-
work for all of physics. A little more concretely, the basic idea is to take 
positions and momenta, the fundamental variables of classical mechanics, 
in terms of which Kramers had derived his classical dispersion formula, 
translate them according to “the scheme of the dispersion theory,” as 
Heisenberg himself put it in an interview for the Archive for the History of 
Quantum Physics (AHQP) in the early 1960s (cf. note 8),46 into quantum 
variables and calculate with those new variables on the assumption that they 
satisfy the same laws as their classical counterparts. Hence, the term Umdeu-
tung: rather than repealing the laws of classical mechanics, Heisenberg 
sought to reinterpret them.47

In Heisenberg’s Umdeutung or reinterpretation scheme, quantities asso-
ciated with a single orbit get replaced by quantities associated with a transi-
tion between two orbits. Electron orbits are eliminated altogether. Heisenberg 
formulated his theory entirely in terms of transition quantities without an-
swering the obvious question “transitions between what?” These transition 
quantities have two indices, referring to an initial and a final state, but 
Heisenberg had nothing whatsoever to say about the nature of those states. 
Multiplication of his two-index objects, Heisenberg found, is noncommuta-
tive: A × B ≠ B × A. In their elaboration of Heisenberg’s Umdeutung paper, 
Born and his former student Pascual Jordan identified these two-index 
objects as matrices, their rows and columns labeled by Heisenberg’s two 
indices (Born and Jordan 1925). This showed that Heisenberg’s strange non-
commutative multiplication rule is nothing but the standard multiplication 
rule for matrices.48

The relation between arch and scaffold in this example is a combination 
of those encountered in the relativity examples. First, the way in which 
Heisenberg, with help from Born and Jordan, generalized Kramers’s theory 
for a specific phenomenon (dispersion) to a new framework for all of phys-
ics (matrix mechanics) is reminiscent of the way in which Laue generalized 
Abraham’s electromagnetic mechanics to a new framework for all of phys-
ics (relativistic continuum mechanics). Second, the way in which Heisenberg 
replaced classical quantities by two-index objects soon to be recognized as 
matrices while keeping the structure of classical mechanics intact is remi-
niscent of the way in which Einstein replaced the definition of the gravita-
tional field in the Entwurf theory by a new definition while keeping the 
formalism developed for the Entwurf field equations intact.
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The example also illustrates an element of the arch-and-scaffold meta-
phor identified in Figure 4.1 that we did not encounter in the relativity exam-
ples. Kramers built his quantum formula and Heisenberg built his quantum 
theory on the foundation—the tas-de-charge in terms of Figure 4.1—of 
classical mechanics. The instrument they used to erect their quantum con-
structions, the windlass in terms of Figure 4.1, was the correspondence 
principle, in the specific guise of the three substitutions listed above.

As part of his Umdeutung project, Heisenberg also had to bring the 
quantization conditions of the old quantum theory, formulated in terms 
of individual orbits, into his new framework. Translating these condi-
tions according to the “scheme of the dispersion theory” (as he put it in 
his AHQP interview), Heisenberg arrived at a corollary of the Kramers 
dispersion formula found independently by Werner Kuhn (1925) and 
Willy Thomas (1925; see also Reiche and Thomas 1925). This Thomas-
Kuhn sum rule served as the quantization condition in the Umdeutung 
paper. It thus has nothing to do with Thomas S. Kuhn, who is the only 
one I know who refers to it as the Kuhn-Thomas sum rule (Duncan and 
Janssen 2007, 594). Born and Jordan (1925) showed that this sum rule can 
be rewritten as

	 	 (6)

(j = 1, 2, 3), where  and  are the components of position and momentum 
(with the “hats” to indicate that these quantities are not numbers but ma-
trices), i is the imaginary unit, and  is Planck’s constant divided by 2π 
(Duncan and Janssen 2007, 659–60). Equation (6) gives the diagonal ele-
ments (j = k) of

	 	 (7)

(j, k = 1, 2, 3; δjk = 1 for j = k, and δjk = 0 for j ≠ k), the familiar commutation 
relations for position and momentum that serve as the basic quantization 
conditions in matrix mechanics.

As in the case of the November 1915 papers in which Einstein first pre-
sented the Einstein field equations, the Umdeutung paper, the harbinger of 
matrix mechanics, still showed clear traces of the scaffold on which it was 
built. Heisenberg’s two-index objects satisfying a peculiar noncommutative 
multiplication rule are still somewhere in between the transition amplitudes 
and transition frequencies of the Kramers dispersion formula and the matrices 
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introduced by Born and Jordan. The Thomas-Kuhn sum rule, the quantiza-
tion condition of the Umdeutung paper, comes straight out of dispersion theory.

Most importantly, perhaps, the notion of a virtual oscillator that Bohr, 
Kramers, and Slater (1924) had taken over from Ladenburg and Reiche (1923) 
served as a placeholder until a more satisfactory way had been found to rep-
resent the states that the systems studied in matrix mechanics were transi-
tioning between. New and better representations would soon be provided, 
be it Schrödinger’s wave functions or von Neumann’s vectors in Hilbert space 
(see the next case study). Virtual oscillators could now be identified either as 
Fourier components of a wave function (Duncan and Janssen 2007, 617) or 
as matrix elements of position (Casimir 1973, 492). However, in their follow-up 
to the Umdeutung paper, written before these contributions by Schrödinger 
and von Neumann, Born and Jordan (1925, 884) still talked about “substi-
tute oscillators,” Ladenburg and Reiche’s original term for virtual oscillators. 
Although today it is used in connection with the BKS theory, Landé (1926) 
actually introduced his “orchestra of virtual oscillators” to describe matrix 
mechanics. At least one popular book continued to use closely related 
imagery—a “band” (Kapelle) of “assistant musicians” (Hilfsmusiker)—to ex-
plain matrix mechanics to a lay audience long after the concept of a quantum 
state had been incorporated into it (Zimmer 1934, 161–62; quoted in Duncan 
and Janssen 2007, 616).

In Duncan and Janssen (2007), we already indicated how to tell this story 
backward in time. Our starting point was exactly the kind of wonder one 
experiences upon first seeing an improbable architectural structure. One of 
those left wondering how Heisenberg built his arch is particle physicist and 
Nobel laureate Steven Weinberg. Talking about the Umdeutung paper in 
Dreams of a Final Theory, he wrote:

If the reader is mystified at what Heisenberg was doing, he or she is not alone. 
I have tried several times to read the paper that Heisenberg wrote on return-
ing from Helgoland [where he had gone to seek relief from an attack of hay 
fever], and, although I think I understand quantum mechanics, I have never 
understood Heisenberg’s motivations for the mathematical steps in his 
paper. (Weinberg [1992] 1994, 67; cf. Duncan and Janssen 2007, 559)

This same quote is used to motivate at least two other studies of the Umdeu-
tung paper (Aitchison, MacManus, and Snyder 2004; Blum et al. 2017). This 
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underscores the point I made in section III that the arch-and-scaffold meta-
phor, far from compounding the historiographical sin of Whiggishness, can 
be seen as an attempt to legitimize a common and benign form of it, even if 
one has to remain vigilant (see note 43).

How von Neumann’s Hilbert-Space Formalism Was Scaffolded  
by the Dirac-Jordan Statistical Transformation Theory49

Quantum theory developed rapidly in the years 1925–1927. By the middle 
of 1926, four different versions were in circulation: the Göttingen matrix me-
chanics of Heisenberg, Born, and Jordan; the wave mechanics of Austria’s 
Erwin Schrödinger; the q-number theory of Cambridge’s Paul Dirac; and, 
though more problematic and less influential than the other three, the op-
erator calculus of Born and the American mathematician Norbert Wiener. 
Schrödinger (1926) had shown that wave mechanics and matrix mechanics 
always give the same empirical predictions. Born (1926a, 1926b) had shown 
that Schrödinger’s wave functions call for a probabilistic interpretation. A 
general formalism tying the four different versions together, however, had 
yet to be found. Then, in late 1926, independently of one another, Jordan 
(1927a) and Dirac (1927) submitted papers proposing essentially the same 
overarching formalism along with its probabilistic interpretation. It became 
known as the Dirac-Jordan statistical transformation theory, or transforma-
tion theory for short. I focus here on Jordan’s formulation, though I will bor-
row some of Dirac’s vastly superior notation. For a comparison of Jordan’s 
approach to Dirac’s—widely disseminated through his influential textbook 
on quantum mechanics (Dirac 1930)—see Duncan and Janssen (2013, 185–90).

Statistical transformation theory can be seen as an arch built on a scaf-
fold constructed out of the four related yet different theories it unified. The 
arch that Heisenberg (1925) had built on the scaffold of the Kramers disper-
sion formula (see the preceding case study) thus became part of the scaffold 
on which Jordan (1927a, 1927b) and Dirac (1927) erected their arch. Within 
a few months, the Hungarian polymath John von Neumann (1927a, 1927b, 
1927c) would use Jordan and Dirac’s arch as a scaffold to build an arch of his 
own, his Hilbert-space formalism for quantum mechanics, although one 
could also say, in the spirit of Hilbert and Young (see section II), that von 
Neumann produced a scaffold to prop up Jordan’s arch. Like Dirac’s paper, 
von Neumann’s papers were later expanded into a book (von Neumann 1932).

I will not even attempt to characterize the relation between arch and scaf-
fold in the transition from the four early versions of quantum theory to 
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transformation theory, other than to say that it is considerably more com-
plicated than in the examples analyzed so far. It will be difficult enough to 
decide which formalism played the role of the arch and which that of the scaf-
fold in the transition from Jordan’s version of transformation theory to von 
Neumann’s Hilbert-space formalism. Either way, it is a challenge to precisely 
characterize the relation between these two formalisms.

As mentioned in the introduction, another important difference between 
this case study and the other four in this section is that in the transition from 
matrix and wave mechanics to transformation theory as well as in the sub-
sequent transition from transformation theory to Hilbert space, the scaffold 
was not dismantled once the arch had been built. Elements of all four of these 
formalisms continue to be used to this day. While many philosophers of 
quantum mechanics use vectors in Hilbert space, quantum chemists for the 
most part get by with Schrödinger wave functions. This is true both in re-
search and in teaching. In introductory physics courses, quantum mechan-
ics is typically presented in the guise of wave mechanics, while for some 
problems techniques from matrix mechanics are used (e.g., raising and low-
ering operators to find the energy spectrum of a simple harmonic oscilla-
tor). More advanced courses typically present a blend of von Neumann’s 
Hilbert-space formalism and Dirac’s version of transformation theory. As we 
will see, this blend depends, for its mathematically cogent formulation, on 
advances made long after the period under consideration here, the late 1920s, 
to which I now return.

Jordan’s new foundation for quantum theory. The new foundation 
(Neue Begründung) of quantum theory that Jordan (1927a) announced in the 
title of his paper is based on two fundamental ideas. First, quantum mechan-
ics is ultimately a theory about conditional probabilities  that 
some physical (i.e., observable or measurable) quantity  has the value a 
given that another physical quantity  has the value b (the tildes indicate 
that these physical quantities are quantum variables; q-numbers in Dirac’s 
terminology). Second, such conditional probabilities are given by the abso-
lute square of corresponding complex probability amplitudes, ϕ (a, b). I use 
the notation of Duncan and Janssen (2013), which follows Dirac rather than 
Jordan, whose notation is a veritable nightmare.50

Examples of probability amplitudes are the familiar energy eigenfunc-
tions ψn (x) of Schrödinger’s wave mechanics, where n refers to the eigenvalue 
En and where, for convenience, we restrict ourselves to one-dimensional 
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problems. The absolute square of this function, | ψn (x) |2 = ψn (x)* ψn (x) 
(where the star denotes complex conjugation), multiplied by the infinitesimal 
distance dx, gives the probability that the position  of the system is some-
where in the narrow interval (x, x + dx) given that its energy  is equal to En:

	 	 (8)

Though eventually named after Born (1926a, 1926b), the probabilistic inter-
pretation of ψn (x) in this particular form is due to Wolfgang Pauli, a quantum 
theorist of the same generation as Heisenberg and Jordan, who was in close 
contact with all three founders of matrix mechanics and made several key con-
tributions himself (Duncan and Janssen 2013, 182–83). Jordan (and Dirac) gen-
eralized Equation (8) for position and energy to arbitrary quantities  and :

	 	 (9)

In Jordan’s formalism, the energy eigenfunction ψn (x) thus becomes the 
probability amplitude ϕ (x, En).

In Jordan’s first paper on his new formalism, only quantities with con-
tinuous spectra are considered. When, in a second paper, Jordan (1927b) tried 
to generalize his formalism to quantities with wholly or partly discrete 
spectra (such as, typically, the energy), he ran into serious difficulties, which 
mercilessly exposed the limitations of his approach.

Jordan’s approach, reflecting his mathematical training in Göttingen, was 
axiomatic (Lacki 2000). He started from a set of postulates for his probabil-
ity amplitudes and then looked for a realization of these postulates. As Hil-
bert, von Neumann, and Lothar Nordheim, one of Hilbert’s assistants at the 
time, put it in a joint paper on Jordan’s new formalism:

One imposes certain physical requirements on these probabilities, which are 
suggested by earlier experience and developments, and the satisfaction of 
which calls for certain relations between the probabilities. Secondly, one 
searches for a simple analytical apparatus in which quantities occur that sat-
isfy these relations exactly. (Hilbert, von Neumann, and Nordheim 1928, 2–3; 
cf. Lacki 2000, 296)

The number of Jordan’s postulates in various expositions of his formalism 
fluctuates between two and six (Duncan and Janssen 2013, 199). I will use a 
version here based on three postulates.
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Jordan’s postulates. The first postulate gives the probability amplitude 
for the basic variables, a generalized coordinate  and its conjugate momen-
tum  (again, we will restrict ourselves to one-dimensional problems):

	 	 (10)

This postulate takes the place of the commutation relations in Equation (7) 
for position and momentum as the basic quantization condition in Jordan’s 
formalism. Since | ϕ (p, q) |2 = 1, he concluded (ignoring the issue of how to 
normalize his probabilities) that “for a given value of [ ] all possible values 
of [ ] are equiprobable” (Jordan 1927a, 814). Jordan’s formalism thus con-
tains the kernel of the uncertainty principle, which Heisenberg (1927), 
drawing on Jordan’s work, would publish later that year.

The second postulate says that the amplitude ϕ (b, a) is the complex con-
jugate of the amplitude ϕ (a, b):

	 ϕ (b, a) = ϕ (a, b)*.	 (11)

For example,  from which it follows that for a given 
value of  all values of  are equiprobable.

The basic amplitude in Equation (10) trivially satisfies the following pair 
of differential equations:

	 	
(12)

Jordan thought that Equations (10)–(12) sufficed to find the probability am-
plitudes for any pair of quantities  and  related to  and  by a so-called 
canonical transformation.

Canonical transformations belong to the bag of tricks the old quantum 
theory had borrowed from celestial mechanics. Closely related techniques 
were central to the derivation of the Kramers dispersion formula (see the 
preceding case study). Born, Heisenberg, and Jordan (1926) had imported 
canonical transformations into matrix mechanics in their famous Dreimän-
nerarbeit. Before he worked out his new foundation for quantum mechan-
ics, Jordan (1926a, 1926b) had published two papers on how to implement 
canonical transformations in matrix mechanics (Lacki 2004; Duncan and 
Janssen 2009). Asked about the use of canonical transformations in the 
Dreimännerarbeit in an interview for the AHQP (cf. note 8) in the early 
1960s, Jordan said:
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Canonical transformations in the sense of Hamilton-Jacobi [theory in celes-
tial mechanics] were . . . our daily bread in the preceding years, so to tie in 
the new results with those as closely as possible—that was something very 
natural for us to try. (Duncan and Janssen 2009, 355)

Canonical transformations, however, proved ill-suited to the task Jordan 
assigned to them in his new formalism. They are both too restrictive and too 
permissive for his purposes. They are too restrictive because quantities re-
lated by a canonical transformation always have the same spectrum (Dun-
can and Janssen 2013, 216). A canonical transformation can thus never take 
us from a quantity with a continuous spectrum to a quantity with a (partly) 
discrete spectrum. As Jordan (1927b) eventually had to concede, this means 
that there is no canonical transformation that takes us from the basic am-
plitude ϕ (p, q) satisfying the pair of differential equations (12) to the new 
amplitude ϕ (x, En) = ψn (x) satisfying a transformed version of this pair of 
differential equations, one of which would have to be equivalent to the 
time-independent Schrödinger equation.

Canonical transformations are also too permissive. Jordan’s realization 
of his postulates turned on identifying probability amplitudes with quan-
tities characterizing associated canonical transformations. Unfortunately, 
as we will see, there are many canonical transformations giving probabil-
ity amplitudes that do not satisfy Equation (11), Jordan’s second postulate. 
Jordan thus had to artificially restrict the class of allowed canonical trans-
formations.51 In hindsight, we can see that Jordan was stretching the clas-
sical formalism beyond its breaking point in trying to make it work for his 
new quantum formalism (Duncan and Janssen 2013, 188–91, 253–54).

Jordan’s third postulate, to which we now turn, also has its share of prob-
lems, though these are not fatal to his project. This postulate is about how to 
combine probability amplitudes for different pairs of quantities. It states that 
in quantum mechanics the usual rules of probability theory, the addition rule 
for the disjunction and the multiplication rule for the conjunction of two out-
comes, apply to the probability amplitudes rather than to the probabilities 
themselves. Following Born and Pauli, Jordan (1927a, 812) called this the “in-
terference of probabilities.”

The famous double-slit experiment illustrates that this is a sensible name. 
Let ϕ1 be the amplitude for the conditional probability that an electron 
strikes a screen at position x given that it went through the first slit. Let ϕ2 
be the amplitude that the electron strikes at x given that it went through the 
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second slit. According to Jordan’s addition rule for probability amplitudes, 
the probability of the electron striking at x if it could have gone through ei-
ther slit is then given by

	 	 (13)

The first two terms in the final expression give the probability that the electron 
strikes the screen at x if it went through one of the slits. The last two terms give 
the interference effects if the electron could have gone through both.

In the paper introducing the uncertainty principle, Heisenberg (1927) 
took Jordan to task for his third postulate, arguing that the laws of proba-
bility are what they are independently of the laws of physics. Even quan-
tum mechanics cannot change them. While most modern commentators 
would agree with this criticism, it does not affect Jordan’s formalism. Jor-
dan only used his dubious new quantum probability laws to derive two 
conditions, which in the further elaboration of the formalism took over 
the role of those new probability laws as the third postulate. These two 
conditions are eminently reasonable whether or not one accepts Jordan’s 
derivation of them. They both continue to hold in modern quantum me-
chanics.

The first of these two conditions says that the probability amplitudes 
ϕ (a, b), ϕ (b, c), and ϕ (a, c) involving the physical quantities   and  

should satisfy the relation

	 	 (14)

In the example of the double-slit experiment,  is the position where the 
electrons hit the screen (with a continuum of values a),  is the position of 
the source of the electrons (with some fixed value c), and  is the position 
of the slits (with two possible values b1 and b2). The integral in Equation (14) 
then reduces to a sum of two terms,

ϕ (a, c) = ϕ (a, b1) ϕ (b1, c) + ϕ (a, b2) ϕ (b2, c).

These two terms are more explicit expressions for the amplitudes ϕ1 and ϕ2 
in Equation (13) (Duncan and Janssen 2013, 186–87n38).

The second of the two conditions effectively serving as Jordan’s third pos-
tulate says that if  in Equation (14), it should be the case that

	 	 (15)
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where δ (x) is defined as “vanishing everywhere except at x = 0 where it is 
infinite.” I put this definition in scare quotes to flag its gross mathematical 
sloppiness. Dirac (1927) introduced this notorious delta function in his ver-
sion of transformation theory. Jordan used it implicitly. Equation (15) ex-
presses the obvious requirement that the probability of finding the value a 
for a quantity  given the value a′ for that same quantity should be zero un-
less those two values are the same.

If  has a fully discrete spectrum, its possible values can be labeled with 
a discrete index, and the requirement (15) can be formulated in mathemati-
cally unobjectionable fashion as:

If  has a fully continuous spectrum, the Kronecker delta δij (see Equation (7) 
for its definition) has to be replaced by the Dirac delta function.

A realization of Jordan’s postulates using canonical trans-
formations. Jordan’s three postulates boil down to the requirement that 
his probability amplitudes satisfy the relations (10), (11), (14), and (15). All 
that is left to do at this point is to find a mathematical representation of 
these probability amplitudes such that these four relations are guaranteed 
to hold (see the description of Jordan’s approach by Hilbert, von Neumann, 
and Nordheim above). Jordan does not tell us how he arrived at this repre-
sentation. He just states his choice and shows that with that choice his pos-
tulates are satisfied. Jordan’s choice, however, is a natural one.

Consider the familiar result that an energy eigenfunction ψn (p) in mo-
mentum space is the Fourier transform of that energy eigenfunction ψn (q) 
in position space:

	 	 (16)

Using notation introduced by Dirac (1927), we can write this transforma-
tion of ψn from q-space to p-space as

	 	 (17)

If p and q were discrete indices, the integral would turn into a sum, and the 
equation would express that a vector with components ψn (p) is equal to the 
product of a matrix with components (p/q), where p labels rows and q labels 
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columns, and a vector with components ψn (q). Equation (17) can be seen as 
the generalization of this relation to a situation in which p and q are con-
tinuous variables. Neither Jordan nor Dirac was overly concerned with the 
mathematical niceties of this generalization.

Comparison between Equations (16)–(17) and Equation (10) suggests that 
the basic probability amplitude for momentum and position be identified 
with the “matrix” (more accurately: the integral kernel) for the transforma-
tion from position space to momentum space:

	 	 (18)

This in turn suggests that the probability amplitude for an arbitrary pair of 
physical quantities  and  be identified with the “matrix” for the transfor-
mation from b-space to a-space,

	 ϕ (a, b) = (a/b).	 (19)

This, of course, is why the Dirac-Jordan formalism is called statistical trans-
formation theory.

Equation (18) shows that the first postulate (i.e., Equation (10)) is 
satisfied. As long as the transformation “matrix” (a/b) is unitary—which 
means that its inverse (a/b)−1 = (b/a) is given by its complex conjugate 
(a/b)*—the second postulate (i.e., Equation (11)) is also satisfied. Alas, not 
all canonical transformations are unitary, which is why Jordan some-
what artificially had to restrict the class of allowed transformations (see 
note 51).

Substituting ψn (p) = ϕ (p, En) = (p/En), ψn (q) = ϕ (q, En) = (q/En) and  
 into Equation (16), we arrive at

	 	 (20)

This shows that Equation (14), one of the two conditions effectively play-
ing the role of Jordan’s third postulate, is satisfied in the special case that 
the quantities   and  are   and  respectively. To show that this is 
true for any triplet of quantities, consider some eigenfunction ψ of the en-
ergy or some other quantity. Its transformation from c-space to a-space is 
given by

	 	 (21)
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Its transformation from c-space to a-space via b-space is given by

	 	

(22)

Comparison of these two transformations shows that (a/c) in Equation (21) 
is equal to the expression in large parentheses in the last line of Equation (22). 
This is just as it should be according to Equation (14) (Duncan and Janssen 
2013, 185).

To verify that Equation (15), the other half of Jordan’s third postulate, is 
also satisfied, compare the final expression for ψ (a) in Equation (22) for 
c = a′ to

	 	 (23)

which holds on the basis of the defining equation for the delta function (i.e., 
for any function f (x), ). This comparison shows that

	 	 (24)

in accordance with Equation (15).

A realization of Jordan’s postulates using Hilbert space. In the 
first installment of a trilogy of papers that would provide the backbone of 
his famous 1932 book, von Neumann (1927a) introduced the Hilbert-space 
formalism of quantum mechanics. With the help of a modern version of 
this formalism, a new realization of Jordan’s postulates can be given. In this 
new realization, integral kernels of canonical transformations, which Jordan 
used to represent his probability amplitudes, are replaced by “inner prod-
ucts” of “vectors” in Hilbert space. I use scare quotes to indicate that the 
justification for treating the relevant quantities as vectors and inner prod-
ucts of vectors turns on results in mathematics only found much later, in 
particular the theory of distributions and the theory of rigged Hilbert 
space, both developed in the 1950s. These developments are beyond the level 
of this paper—and beyond my command of mathematics. They nicely illus-
trate the point William Young (1926) made in his presidential address to 
the London Mathematical Society (see section II). Sometimes more sophis-
ticated mathematics can be used to shore up more basic mathematics. Once 
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that has been done, one can use the latter without worrying about the for-
mer. A modern student of quantum mechanics will hardly ever go wrong 
envisioning elements in Hilbert space as vectors in a finite-dimensional 
vector space. This section is written in that spirit. From now on, I will talk 
about vectors and inner products without using scare quotes, even though I 
will remind the reader at several junctures of the mathematical difficulties 
lurking just below the surface. With that preamble, let me introduce the 
Hilbert-space formalism and sketch how it can be used to construct a real-
ization of Jordan’s postulates.

In the Hilbert-space formalism, physical quantities,  are represented 
by certain linear operators mapping vectors onto other vectors in a complex, 
infinite-dimensional vector space known as Hilbert space:  
(a  “hat” denotes an operator; | 〉 is the standard modern notation, due to 
Dirac, for a vector in Hilbert space). That  is linear means that

	 	 (25)

for any vectors | f1〉 and | f2〉 and any complex numbers λ and μ. If a vector 
|a〉 satisfies

	 	 (26)

it is called an eigenvector of  and the (in general, complex) number a is 
called an eigenvalue of  Physical quantities are represented by so-called 
self-adjoint (or Hermitian) operators. Their eigenvalues are always real num-
bers. The (infinite) set of all eigenvectors of any self-adjoint operator forms 
an orthogonal basis for Hilbert space.

The standard notation, again due to Dirac, for the inner product of two 
arbitrary vectors, | f 〉 and |g〉, in Hilbert space is 〈 f | g〉. Since this will in gen-
eral be a complex number, the order matters:

	 〈 g | f 〉 = 〈 f | g 〉*.	 (27)

It thus makes a difference whether | 〉 enters an inner product 〈 | 〉 on the 
right, as a vector | 〉, or on the left, as a dual vector 〈 |. The dual vector of | 〉 
is 〈 |  where  is called the adjoint of  For self-adjoint operators, 

The energy  is represented by a self-adjoint operator  with normal-
ized eigenvectors |En〉 and eigenvalues En. The position  is likewise repre-
sented by a self-adjoint operator  with normalized eigenvectors |x〉 and 
eigenvalues x. The normalization is mathematically more problematic in the 
case of continuous spectra than in the case of discrete spectra. For systems 
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with a fully discrete energy spectrum, for instance, we can simply use the 
Kronecker delta: . For quantities such as position with fully 
continuous spectra, we need the Dirac delta function: 〈x | x′ 〉 = δ (x − x′). 
The inner products 〈x | En〉 of these normalized eigenvectors give the famil-
iar energy eigenfunctions ψn (x) of wave mechanics. As we saw above (cf. 
Equations (8)–(9)), these are also the probability amplitudes ϕ (x, En).

This is true in general. Jordan’s three postulates are satisfied if the prob-
ability amplitude ϕ (a, b) for any pair of physical quantities  and  is set 
equal to the inner product 〈a | b〉 of the normalized eigenvectors |a〉 and |b〉 
of the corresponding self-adjoint operators  and .

It will be instructive to explicitly verify this for Jordan’s second and third 
postulates. The second postulate (i.e., Equation (11)) follows directly from the 
definition of the inner product in Hilbert space: ϕ (b, a) = ϕ (a, b)* because 
〈b | a〉 = 〈a | b〉* (see Equation (27)). There is no need for the kind of restric-
tions on 〈a | b〉 that Jordan had to impose on (a/b).

The third postulate (i.e., Equations (14)–(15)) holds by virtue of a 
key result of von Neumann’s Hilbert-space formalism, his famous spec-
tral theorem for self-adjoint operators. We need not worry about the 
proof of this theorem, but we do need to understand at least roughly what 
it says.

Consider a discrete orthonormal basis {|ei〉} (with 〈ei | ej〉 = δij) in a finite 
dimensional complex vector space. Any vector | f 〉 in that space can be writ-
ten in terms of its components with respect to this basis:

	 	 (28)

The complex number 〈ei | f 〉 gives the component of | f 〉 in the direction of 
|ei〉. Equation (28) can also be parsed in a different way. We can identify the 
expression |ei〉 〈ei| as a projection operator,

	 	 (29)

that maps any vector | f 〉 onto the part of | f 〉 in the direction of |ei〉 (  is a 
self-adjoint operator). Equation (28) then expresses that the sum of these 
projection operators is the identity operator

	 	 (30)
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which maps any vector | f 〉 back onto itself. Equation (30) is called the 
resolution of unity corresponding to the orthonormal basis {|ei〉}.

Von Neumann’s spectral theorem sanctions the generalization of Equa-
tions (28)–(30) from finite-dimensional complex vector spaces to infinite-
dimensional complex Hilbert space with both discrete and continuous 
orthonormal bases. The analogue of Equation (28) in Hilbert space with an 
orthonormal basis consisting of normalized eigenvectors |a〉 of the self-
adjoint operator  is

	 	 (31)

where the integral is to be taken over all eigenvalues of  Using the de-
composition of | f 〉 in Equation (31), the definition of the eigenvectors |a〉 in 
Equation (26), and the linearity of the operator  we can write the action 
of  on | f 〉 as

	 	 (32)

It follows that  can be written as

	 	 (33)

where, in analogy to  in Equation (29), the projection operator  is given by

	 	 (34)

This operator maps any vector | f 〉 in Hilbert space onto the part of | f 〉 in 
the direction of |a〉. In analogy to Equation (30), the integral of  over all 
eigenvalues of  is the identity operator,

	 	 (35)

Equation (33) gives the spectral decomposition of the self-adjoint operator 
. Equation (35) gives the corresponding resolution of unity.

Once the hard work of proving the spectral theorem is done, it is easy to 
show that Equations (14)–(15) (and thereby Jordan’s third postulate) are satis
fied if probability amplitudes ϕ (a, b) are identified with inner products 
〈a | b〉. Equation (14) requires that

	 	 (36)

where |a〉, |b〉, and |c〉 are the normalized eigenvectors of the self-adjoint op-
erators   and  representing the quantities   and  This relation 
holds by virtue of the resolution of unity corresponding to the spectral 
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decomposition of  which allows us to rewrite the right-hand side as 
 Equation (15) requires that

	 	 (37)

This relation holds by virtue of the spectral decomposition of  and the 
normalization 〈a | a′〉 = δ (a − a′) of the eigenvectors of 

How von Neumann did not build his arch on Jordan’s scaffold 
and why not. The preceding two subsections suggest that we have found 
another picture-perfect example of my arch-and-scaffold metaphor in the 
history of early twentieth-century physics. The relation between arch and 
scaffold in this case is reminiscent of the general-relativity example dis-
cussed earlier. In both cases, swapping out one building block for another 
while leaving the structure built with them intact resulted in a new build-
ing exhibiting the splendor of a magnificent mathematical formalism that 
had been waiting in the wings. In the case of general relativity, the build-
ing blocks were two different definitions of the gravitational field, and the 
mathematical formalism was the differential geometry of Riemann and 
others. In this case, the building blocks are two different realizations of 
Jordan’s probability amplitudes—ϕ (a, b) = (a/b) and ϕ (a, b) = 〈a | b〉—and 
the mathematical formalism is Hilbert’s spectral theory of operators as 
generalized by von Neumann.

Historically, however, this is not how von Neumann got from the Jordan-
Dirac transformation theory to his own Hilbert-space formalism. Even in 
the historical literature, von Neumann’s formalism is not always clearly dis-
tinguished from Dirac’s. In the classic book on the conceptual development 
of quantum mechanics mentioned in section II, for instance, Jammer (1966, 
307–22) gave the section dealing with von Neumann (1927a, 1927b, 1932) the 
misleading title “The Statistical Transformation Theory in Hilbert Space” 
(Duncan and Janssen 2013, 193n51). This is what von Neumann had to say 
about Dirac in the preface of the book that grew out of his 1927 papers:

Dirac’s method does not meet the demands of mathematical rigor in any 
way—not even when it is reduced in the natural and cheap way to the level 
that is common in theoretical physics . . . the correct formulation is not just 
a matter of making Dirac’s method mathematically precise and explicit but 
right from the start calls for a different approach related to Hilbert’s spectral 
theory of operators. (von Neumann 1932, 2)
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Rather than using Hilbert space to provide a new realization of probability 
amplitudes, von Neumann wanted to avoid probability amplitudes alto-
gether. One of his major objections against the Dirac-Jordan formalism was 
its reliance on the Dirac delta function. This is not a well-defined function, 
and von Neumann (1927a, 2) dismissed it as simply “absurd.” He also ob-
jected to the basic probability amplitude  for position and mo-
mentum introduced by both Dirac and Jordan (with the latter even elevating 
it to the status of a postulate; see Equation (10)). Although this is at least a 
well-defined function, the integral of its absolute square diverges. That means 
that it is not an element of the space of square-integrable functions, which is 
one instantiation of Hilbert space.

As mentioned above, the mathematics needed to solve these problems 
(the theory of distributions and the theory of rigged Hilbert space) was not 
developed until the 1950s. Using these new tools, we can replace transforma-
tion “matrices” (a/b) by “inner products” 〈a|b〉 in a mathematically rigorous 
way. So, contrary to what von Neumann believed in 1927 and 1932, it is pos-
sible to make “Dirac’s method mathematically precise and explicit.” I already 
alluded to the continued use of the resulting formalism, blending elements of 
Dirac and von Neumann, in more advanced courses on quantum mechanics, 
although textbook writers and instructors typically (and understandably!) 
only gesture at the mathematics needed for its rigorous formulation.

Given the familiarity of this formalism, modern readers may be tempted 
to read it back into Dirac’s original paper of 1927 on transformation theory—
that is, to read his “brackets” (a/b) as inner products 〈a|b〉 and then break 
those up into “bra”-s 〈a| and “ket”-s |b〉, the now familiar names, due to Dirac, 
for vectors (kets) and their duals (bras) in Hilbert space. Although Dirac (1930) 
made use of the Hilbert-space formalism in his book, it was only in 1939 that 
he himself first split “brackets” into “bras” and “kets” (Borrelli 2010).

How von Neumann did introduce his formalism in response to 
Jordan’s. There is no doubt that von Neumann introduced his Hilbert-
space formalism in response especially to Jordan’s version of the Dirac-
Jordan statistical transformation theory. What is not clear, as I mentioned at 
the beginning of this section, is whether von Neumann’s formalism is best 
understood as an arch built on top of the scaffold provided by Jordan’s for-
malism or as a scaffold built to support Jordan’s mathematically unsound 
arch. I will return to this ambiguity at the end of this section, after I have 
gone over the steps actually taken by von Neumann in 1927.
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I already mentioned the paper on Jordan’s formalism by Hilbert, von 
Neumann, and Nordheim (1928), submitted in April 1927 but published only 
the following year. The authors emphasized the mathematical problems with 
Jordan’s formalism and referred to a forthcoming paper by von Neumann 
that would address them. Rather than confronting these problems head-on, 
however, von Neumann (1927a) avoided them by deviating from Jordan’s ap-
proach almost from the start. He only took over the two basic ideas on 
which Jordan had built his formalism: first, that quantum mechanics is a 
theory about conditional probabilities; second, that these probabilities satisfy 
some peculiar rules.

As Hilbert and his coauthors had written approvingly about Jordan’s 
third postulate, “axiom IV” in their exposition:

This requirement is obviously analogous to the addition and multiplication 
theorems of ordinary probability calculus, except that in this case they hold 
for the amplitudes rather than for the probabilities themselves. (Hilbert, von 
Neumann, and Nordheim 1928, 5)

In his own paper, von Neumann reiterated that, in Jordan’s formalism,

the multiplication law of probabilities does not hold in general (what does 
hold is a weaker law corresponding to Jordan’s “combining of probability am-
plitudes”). (von Neumann 1927a, 46)

Instead of introducing Jordan’s probability amplitudes, however, von Neu-
mann constructed a formula for conditional probabilities out of projection op-
erators in Hilbert space—Einzeloperatoren, as he called them, or E.op.s for short. 
Using the notation for projection operators introduced in Equation (34), we 
can write von Neumann’s formula as (Duncan and Janssen 2013, 242–44)

	 	 (38)

where the trace  of any operator  is defined with the help of an arbi-
trary discrete orthonormal basis {|ei〉} of Hilbert space:

	 	 (39)

It is easily shown that the result does not depend on which orthonormal 
basis we use to evaluate the trace.
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Using this definition and using Equation (34) for the projection opera-
tors, we verify that Equation (38) reduces to Equation (9), Jordan’s formula 
for the same conditional probability:

	 	
(40)

In the last step we used that  is the identity operator and that 
〈b | a〉 〈a | b〉 = 〈a | b〉* 〈a | b〉 = |〈a | b〉|2. It is important to note, however, that the 
projection operators were the fundamental quantities for von Neumann. 
Expressing them in terms of “bras” and “kets” reintroduces some of the 
mathematical objections that he got around by using projection operators 
instead of probability amplitudes.

Using the resolution of unity the same way as in Equation (40), 
one readily verifies that  for arbitrary operators  and  
Von Neumann’s formalism thus reproduces the relation  

 that follows directly from Jordan’s second postulate (see 
Equation (11)).

It is also easy to verify that the relation

	 	 (41)

in von Neumann’s formalism is the equivalent of Equation (14), which ex-
presses the “interference of probabilities” in Jordan’s formalism. If the pro-
jection operators are written in terms of bras and kets, the left-hand side of 
Equation (41) reduces to 〈c | a〉 〈a | c〉 (cf. Equation (40)). The right-hand side 
can similarly be written as

	 	 (42)

It follows that

	 	 (43)

which is Equation (14) for Jordan’s probability amplitudes if these amplitudes 
are identified with inner products in Hilbert space (see Equation (36)). It is 
probably no coincidence that Equation (41) is nowhere to be found in von 
Neumann (1927a). Von Neumann was interested in the outcome of an ac-
tual measurement of one quantity given the outcome of a prior measurement 
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of another quantity. In the type of situation involving three quantities con-
sidered by Jordan in Equation (14), it is critical, modern quantum mechan-
ics tells us, that the quantity  is not actually measured.

Getting from the formalism of Jordan (1927a) to the formalism of von 
Neumann (1927a) is clearly not as straightforward as replacing one building 
block by another. It is true that projection operators replaced probability am-
plitudes as the basic elements but, unlike the substitution of inner products 
for transformation “matrices,” this replacement was accompanied by inva-
sive structural changes in the edifice built out of these elements.

We can distinguish three layers in Jordan’s formalism: basic ideas, pos-
tulates expressing those ideas, and a realization of those postulates. Von Neu-
mann only took over the first of these layers. His paper with Hilbert and 
Nordheim, however, shows that he had carefully examined Jordan’s entire 
building. While this inspection had revealed it to be a rickety mathematical 
structure from top to bottom, it at least had given him a good idea as to what 
a general formalism for quantum mechanics would have to deliver to be 
viable as a new framework for doing physics.

Von Neumann recognized that a generalization of Hilbert’s spectral 
theory of operators was much more appropriate for the purposes of Jordan 
and Dirac than the theory of canonical transformations that they themselves 
had pressed into service. The Hilbert-space formalism thus freed quantum 
mechanics from some of the vestiges of classical mechanics that can clearly 
be recognized in transformation theory (in the original form in which Jordan 
and Dirac presented it) and its progenitors, matrix mechanics, and q-number 
theory.

We already saw that Jordan’s strong reliance on canonical transforma-
tions created a number of serious problems. Many of these are specific to Jor-
dan’s axiomatic formulation of transformation theory and do not affect 
Dirac’s formulation. In other respects, however, both Jordan and Dirac were 
handicapped by their commitment to canonical transformations. A feature 
of canonical transformations that I did not emphasize so far is that it is al-
ways a transformation from a pair of variables, some generalized coordinate 
q and its conjugate momentum p, to another such pair. As long as probabil-
ities are defined in terms of canonical transformations, all physical quanti-
ties thus need to be sorted in terms of such conjugate variables. Part of von 
Neumann’s new way of defining these same probabilities in terms of projec-
tion operators was the recognition that physical quantities can be represented 
by self-adjoint operators acting in Hilbert space. With that recognition, the 
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need to group quantities in pairs of conjugate variables evaporated: one no 
longer had to mind one’s p’s and q’s (Duncan and Janssen 2013)

Von Neumann’s Hilbert-space formalism also brought the definitive 
clarification of the relation between matrix mechanics and wave mechanics. 
The two theories correspond to different instantiations of Hilbert space. Wave 
mechanics works in the space of square-integrable complex functions; 
matrix mechanics in the space of square-summable complex sequences. 
Von Neumann (1927a) referred to theorems by Parseval, Fischer, and 
Riess—theorems mathematicians had known about for at least two 
decades—proving the isomorphism of these two infinite-dimensional com-
plex vector spaces (Duncan and Janssen 2013, 238–39).

Von Neumann (1927a) submitted the paper in which he introduced his 
Hilbert-space formalism for quantum mechanics in May 1927. Six months 
later, he submitted another paper in which he distanced himself even fur-
ther from Jordan’s approach than he had in May. In Duncan and Janssen 
(2013, 187n39), we conjectured that this was in response to Heisenberg’s un-
certainty paper published in late March. In that paper, Heisenberg (1927) 
criticized Jordan’s idea that quantum mechanics called for a modification of 
the basic rules of probability theory. In April (in his paper with Hilbert and 
Nordheim) and in May, von Neumann had endorsed Jordan’s position (see 
the quotations above). In November, however, he unequivocally rejected it. 
One of the shortcomings of his earlier paper, he wrote, was that

the relation to the ordinary probability calculus was not sufficiently clarified: 
the validity of its basic rules (addition and multiplication law of the probabil-
ity calculus) was not sufficiently stressed. (von Neumann 1927b, 246)

The title of von Neumann’s new paper accordingly promised a new 
“probability-theoretical construction” (Wahrscheinlichkeitstheoretischer 
Aufbau) of quantum mechanics. Von Neumann was familiar with the work 
on probability theory that Richard von Mises (1928) would publish in book 
form the following year. To define the probability that a particular property 
of a system has a particular value, von Neumann, following von Mises, imag-
ined an ensemble of a large number of copies of the system and asked about 
the relative frequency with which a copy randomly drawn from this ensem-
ble would have that value for that property. He introduced the as yet unknown 
function ℰ(…) for the expectation value of a property in such ensembles. 
Assuming that properties are represented by self-adjoint operators acting in 
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Hilbert space and imposing some seemingly innocuous conditions on the 
function ℰ(…), von Neumann was able to derive a unique expression for it 
(Duncan and Janssen 2013, 247–50; Bub 2010; Dieks 2017).

In modern terms, von Neumann’s formula for the expectation value of a 
property of a system, a property represented by some self-adjoint operator 

 in an ensemble of a great many copies of this system, an ensemble charac-
terized by a density operator  can be written as

	 ℰ 	 (44)

For a uniform ensemble consisting of identical copies of the system, the 
density operator, von Neumann showed, is just the projection operator  
onto the unit vector |ψ〉 representing the state of all members of the en-
semble. Inserting

	 	 (45)

for  in Equation (44), we recover the more familiar expression for the ex-
pectation value of the property represented by  in a system in the state |ψ〉,

	 	 (46)

For a nonuniform ensemble, the density operator  is a weighted sum of 
projection operators  onto unit vectors in the set {|ψk〉} representing the 
various states of the members of the ensemble:

	 	 (47)

where the αk’s are real numbers such that  Inserting Equation 
(47) for  in Equation (44), we find that the expectation value in this non-
uniform ensemble is given by

	 	 (48)

Von Neumann’s dissatisfaction with Jordan’s uncritical introduction of 
probabilities thus led him to the important distinction between uniform and 
nonuniform ensembles or, in modern terms, between pure states and mixed 
states. Thermal states are represented by mixed states in quantum mechan-
ics. Before the end of the year, von Neumann (1927c), using his density op-
erators to describe various ensembles, published yet another paper, the final 
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installment of his 1927 trilogy, that helped lay the foundations for quantum-
statistical mechanics.

Jordan and von Neumann: arch or scaffold? If we look at the se-
quence of general formalisms for quantum mechanics in Neue Begründung 
(Jordan 1927a, 1927b), Mathematische Begründung (von Neumann 1927a), 
and Wahrscheinlichkeitstheoretischer Aufbau (von Neumann 1927b), we can 
clearly see how important elements of the earlier formalisms were retained in 
the later ones while others were dropped (such as, for instance, the need to 
group quantities in pairs of conjugate variables). However, if we try to charac-
terize this progression in terms of arches and scaffolds, it is not clear which 
version of the metaphor we should use. Was the earlier formalism used as a 
scaffold to facilitate the construction of the arch of the later formalism, or was 
the later formalism used as a scaffold to prevent the earlier arch from collaps-
ing? We can tell the story using either version of the metaphor. The best way to 
tell it may be by mixing the two. In any event, this case calls for a loosening of 
the metaphor. No matter which formalism played the role of the scaffold and 
which one that of the arch, the fact remains that the scaffold was never taken 
down. Instead we are left with a composite of arch and scaffold.

V. The Arch-and-Scaffold Metaphor and  
Evolutionary Biology
In the introduction to his magnum opus, The Structure of Evolutionary 
Theory, Stephen Jay Gould (2002, 1–6) used an architectural metaphor to 
describe the development of evolutionary theory that fits nicely with the 
arch-and-scaffold metaphor, even though they work on different scales. 
Gould compared a sequence of closely related theories to a cathedral; I com-
pare pairs of adjacent terms in such a sequence to arches and scaffolds.52

Gould took his metaphor from the Scottish geologist, botanist, and pa-
leontologist Hugh Falconer. In an 1863 paper on Darwin’s theory of descent 
with modification from a common ancestor through natural selection, Fal-
coner suggested that the further development of the theory would end up 
resembling the building of the Duomo in Milan. This cathedral was built over 
several centuries and combines conflicting Gothic and baroque styles. Gould 
contrasted Falconer’s view that Darwin had laid the foundations for a build-
ing bound to be built according to plans very different from Darwin’s original 
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ones with Darwin’s own view, expressed in his response to Falconer that the 
latter would continue to govern the construction of the entire building (or, 
in Darwin’s own terms, that the whole “framework will stand,” not just the 
foundations).

In Gould’s view, the actual development of evolutionary theory has been 
much closer to what Falconer than to what Darwin expected (Grantham 
2004, 30). In other words, the way Gould saw it, contemporary evolutionary 
theory resembles the Duomo in just the way Falconer envisioned. Whittaker 
made a similar observation about the development of Maxwell’s theory of 
electromagnetism. After discussing the elaboration of Maxwell’s theory by 
J.  J. Thomson, George Francis FitzGerald, Oliver Heaviside, Poynting, and 
others, he noted: “Maxwell’s theory was now being developed in ways which 
could scarcely have been anticipated by its author. But although every year 
added something to the superstructure, the foundations remained much as 
Maxwell had laid them” (Whittaker [1951–1954] 1987, 1:318). My first stab at 
an analysis of the development of quantum theory in terms of arches and 
scaffolds in section IV suggests that similar observations can be made about 
quantum theory.

Talking about an early stage in the development of quantum theory, 
physicist and philosopher Henry Margenau used the same building meta-
phor as Falconer: “Bohr’s atom sat like a baroque tower upon the Gothic base 
of classical electrodynamics” (Margenau 1950, 311; quoted in Lakatos 1970, 
142). Unlike Falconer, however, he considered this “a malformation in the 
theory’s architecture” (Margenau 1950, 311; quoted in Lakatos 1970, 142). In 
a lecture at Keio University in 1989, condensed-matter icon Philip W. An-
derson also compared science to a cathedral but did so to emphasize science’s 
beauty. After a brief sketch of various important contributions to physics that 
build on the 1957 paper by John Bardeen, Leon Cooper, and John Robert 
Schrieffer introducing the BCS theory of superconductivity named after 
them, Anderson (1994, 239) asked: “Where does the beauty reside?” The best 
answer he could come up with is that it resides in the network of citations 
connecting the relevant papers. He then added:

Science has the almost unique property of collectively building a beauti-
ful edifice: perhaps the best analogue is a medieval cathedral like Ely or 
Chartres  .  .  . where many dedicated artists working with reference to 
each other’s work jointly created a complex of beauty. (Anderson 1994, 
239)
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The same metaphor has been used to describe technological developments. 
Discussing the question “who deserves the most credit for inventing the 
internet” in his bestseller The Innovators, Walter Isaacson (2014, 260)53 
quotes pioneer Paul Baran “using a beautiful image that applies to all inno-
vation”:

The process of technological development is like building a cathedral. 
Over the course of several hundred years new people come along and 
each lays down a block on top of the old foundations. (Hafner and Lyon, 
1996, 79)

Another comparison of science to a cathedral can be found in the preface of 
a book on thermodynamics by Gilbert Lewis and Merle Randall (1923). Their 
image of the cathedral of science under construction is reminiscent of the 
factory that Duhem saw in Lodge’s Modern Views of Electricity (see section 
III). Unlike Duhem, however, Lewis and Randall saw this as a good thing. 
The awe inspired by science’s cathedrals should not get in the way of its day-
to-day business.

There are ancient cathedrals which, apart from their consecrated purpose, 
inspire solemnity and awe . . . The labor of generations of architects and ar-
tisans has been forgotten, the scaffolding erected for their toil has long since 
been removed, their mistakes have been erased, or have become hidden by 
the dust of centuries. Seeing only the perfection of the completed whole, we 
are impressed as by some superhuman agency. But sometimes we enter such 
an edifice that is still under construction; then the sound of hammers, the 
reek of tobacco, the trivial jests bandied from workman to workman, enable 
us to realize that these great structures are but the result of giving to ordi-
nary human effort a direction and a purpose.

Science has its cathedrals, built by the efforts of a few architects and of 
many workers. In these loftier monuments of scientific thought, a tradition 
has arisen whereby the friendly usages of colloquial speech give way to a 
certain severity and formality. While this may sometimes promote precise 
thinking, it more often results in the intimidation of the neophyte. There-
fore, we have attempted, while conducting the reader through the classic 
edifice of thermodynamics into the workshops where construction is now in 
progress, to temper the customary severity of the science insofar as is compat-
ible with clarity of thought. (Lewis and Randall 1923, vii)
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In the preface of his textbook on special relativity, J.  L. Synge similarly 
wrote: “My ambition has been to make [Minkowski] space-time a real work-
shop for physicists, and not a museum visited occasionally with a feeling of 
awe” (Synge [1955] 1972, vii).

After these examples of physicists comparing the development of their 
field to the building of cathedrals, I return to Gould’s discussion of Falconer’s 
use of the metaphor. After contrasting the different ways in which Darwin 
and Falconer expected the cathedral of evolutionary theory to be built, he 
noted parenthetically that

no one has suggested the third alternative, often the fate of cathedrals—
destruction, either total or partial, followed by a new building of contrary or 
oppositional form, erected over a different foundation. (Gould 2002, 6)

As I pointed out in section II, the original Waterloo Bridge did suffer the 
fate of Gould’s third alternative, which corresponds to the metaphor Kuhn 
used in his Guggenheim application of “tearing down one habitable struc-
ture and rebuilding to a new plan.” Neither the development of evolution-
ary theory nor the development of quantum and relativity theory fits this 
metaphor.

Since I brought up evolutionary theory, the question naturally arises how 
these architectural metaphors for theory change (arches and scaffolds, build-
ing a cathedral) relate to accounts of theory change modeled on biological 
evolution. Toward the end of Structure, Kuhn ([1962] 2012) used an analogy 
“that relates the evolution of organisms to the evolution of scientific ideas,” 
albeit with the caveat that the analogy “can easily be pushed too far” (171). 
The evolutionary biology Kuhn had in mind was almost certainly the popu-
lation genetics of the Modern Synthesis, which reigned supreme in the early 
1960s (Bowler 2003, chapter 9).

The analogy between population genetics and cultural evolution is best 
known through the last chapter of Richard Dawkins’s The Selfish Gene, in 
which selection of memes, units of culture, takes the place of selection of 
genes (Dawkins 1976, chapter 11). Dawkins does not apply his model for cul-
tural evolution to science but gives no indication that it could not be applied 
there as well.

One key difference between the evolution of theories and the evolution 
of species, however, is that modifications of theories, unlike variations in 
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species that form the input for natural selection, are anything but generated 
at random. Kuhn has little to say about where new theories come from,54 
and some of what he does say might give comfort to those tempted to push 
the analogy beyond its breaking point. Consider, for instance, the follow-
ing passage in Structure: “The new paradigm, or a sufficient hint to permit 
later articulation, emerges all at once, sometimes in the middle of the 
night, in the mind of a man deeply immersed in crisis” (Kuhn [1962] 2012, 
90). Combining statements such as these with Kuhn’s emphasis on the pro-
liferation of different articulations of a paradigm in a period of crisis—
both in general (Kuhn [1962] 2012, chapter 7) and more specifically (Kuhn 
1970, 257; “more and wilder versions of the old quantum theory than 
before”)—one may come away with the impression that modifications of 
theories, not unlike variations in species, are typically generated in great 
profusion and in no particular direction and that the way in which modifica-
tions of theories compete for acceptance by a given scientific community is 
not dissimilar to the way variations in species compete for a given eco-
logical niche.

Incidentally, in his critique of Lodge mentioned in section III, Poynting 
used the biological metaphor suggested by Kuhn toward the end of Struc-
ture to characterize the tradition of constructing mechanical models for the 
ether. Lodge, he wrote,

uses the main idea of Maxwell’s model [see Figure 4.6] but replaces Maxwell’s 
duality of magnetic wheels and electric “idle” wheels by a duality of electric 
wheels. It is, perhaps, an open question whether this is really a simplification, 
but the attempt was well worth making, for it is only by variation and natural 
selection that the mechanical model will be suited to its environment in the 
electric world. (Poynting 1893, 635)

The random proliferation of ether models in great profusion suggested by 
this analogy hardly does justice to the development of ether theory by late-
Victorian Maxwellians. The arch-and-scaffold metaphor fits this develop-
ment much better. Lodge’s ether was scaffolded by Maxwell’s, as a superficial 
comparison of Figures 4.3 and 4.6 already suggests.

Gould was among those leading the charge against the hard-line ver-
sion of the Modern Synthesis.55 In his attack on this hardening orthodoxy, 
he used an architectural metaphor that has become more popular than the 
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one by Falconer he unearthed. Gould’s own metaphor involves the Basilica 
di San Marco in Venice rather than the Duomo in Milan (see Figure 4.7 
below). In “The Spandrels of San Marco and the Panglossian Paradigm,” 
Gould teamed up with Richard Lewontin—he who warned that the price 
of metaphor is eternal vigilance (see section II)—to offer, as they an-
nounced in the subtitle of their paper, “a critique of the adaptationist pro-
gramme.” Panglossian refers to Dr. Pangloss, Voltaire’s caricature of 
Leibniz in Candide, who sees adaptation everywhere. In the abstract, the 
authors wrote:

An adaptationist programme has dominated evolutionary thought in Eng-
land and the United States during the past forty years. It is based on faith in 
the power of natural selection as an optimizing agent. It proceeds by break-
ing an organism into unitary “traits” and proposing an adaptive story for each 
considered separately . . . We criticize this approach and attempt to reassert 
a competing notion (long popular in continental Europe) that organisms 
must be analyzed as integrated wholes, with baupläne so constrained by phy-
letic heritage, pathways of development, and general architecture that the 

Figure 4.6. The “honeycomb ether” scaffolding Maxwell’s equations for electric and magnetic fields 
(Maxwell 1861–1862, pt. II, plates following 488).
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constraints themselves become more interesting and more important in delim-
iting pathways of change than the selective force that may mediate change 
when it occurs. (Gould and Lewontin 1979, 581 [my emphasis]; see also 593–94 
as well as Gould 1980, 39–40)

Gould and Lewontin thus championed an approach to biological evolution 
that de-emphasizes the agent of evolutionary change (natural selection) and 
puts the emphasis on the role of constraints instead. In his bestseller Your 
Inner Fish, Neil Shubin (2008) shows what an account of evolutionary change 
along these lines looks like. Taking the same backward-looking perspective 
that I argued we should strive for in arch-and-scaffold narratives (see sec-
tion III), Shubin traces the evolution of various parts of the human body back 
along our branch of the evolutionary tree. Although he clearly acknowledges 
that natural selection is the mechanism that “mediate[s] change when it 
occurs,” I do not recall coming across the term natural selection even once 
when reading his book and a search in an electronic version did not return 
a single instance of the term. Shubin’s emphasis is on Gould and Lewontin’s 

Figure 4.7. Spandrels in the Basilica di San Marco. Courtesy of the Procurator of San Marco.
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constraints. He even uses the term scaffolding at one point: “The scaffolding of 
our entire body originated in a surprisingly ancient place: single-celled ani-
mals” (Shubin 2008, 123).

A full-blown version of the approach advocated by Gould and Lewon-
tin, which goes by the acronym evo-devo (for evolution and development), 
has become popular in biology (Sansom and Brandon 2007). Evo-devo fits 
much better with the arch-and-scaffold metaphor for the evolution and de-
velopment of scientific theories than the population genetics of the Modern 
Synthesis. An arch-and-scaffold narrative for an episode of theory change 
highlights how structures in a later theory can be traced to structures in an 
earlier one. It brackets the question of how the new theory displaced the old 
one and instead focuses on how the new theory grew out of the old one. The 
parallels to Gould and Lewontin’s “Spandrels of San Marco” or Shubin’s 
Your Inner Fish should be obvious. They are interested in tracing structures 
in later species to structures in earlier species and less interested in spelling 
out the details of the selection process through which the former displaced 
the latter.

The concept of constraints can fruitfully be used both in evo devo–type 
accounts of biological evolution and in arch-and-scaffold-type accounts of 
theory change, even though the forces behind the constraints are different. 
With biological organisms, as with architectural structures, the constraints 
ultimately come from limitations of the malleability of (the arrangement of) 
the components out of which the organism or the architectural structure are 
made. These components and arrangements can only be tweaked so much 
before the creature ceases to be viable or the building collapses. Over time, 
natural selection can change one creature into a radically different creature, 
but it cannot get there in one fell swoop. In a mature science, it turns out, a 
theory that has proved its mettle by accounting for a wide array of empirical 
data can likewise only be tweaked so much before it ceases to be empirically 
viable. In this case, it is conceivable, of course, that an exceptionally imagi-
native scientist dreams up a radically different theory that accounts for an 
even more impressive array of data than the prevailing one. At first sight, it 
may even look as if that is essentially how relativity theory and quantum the-
ory burst upon the scene. On closer examination (see section IV), the found-
ing fathers of these theories arrived at them by tweaking existing theories 
under the tight constraints imposed by empirical viability. But whereas 
nature tweaks species at random, scientists tweak theories by design—or 
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so one would hope! Because of this key difference, constraints play an even 
larger role in the evolution of theories than in the evolution of species. It is 
only natural then for modern historians of science looking for help from 
evolutionary biology in their studies of theory change to turn to Gould and 
evo-devo and to forget about Dawkins and population genetics. Of course, 
fifty years from now this new alliance might mainly show us that we were 
prisoners of our time, just as Kuhn was of his.

Be that as it may, it seems to me that the concept of constraints, as developed 
by Gould and others, has the potential to help us overcome the limitations 
of the arch-and-scaffold metaphor that we ran into at various junctures in 
section IV. In particular, it may help us articulate relations between the 
scaffolded and the scaffolding theory that do not naturally fit the basic ar-
chitectural metaphor of arches and scaffolds. To illustrate this potential, I 
close this section with a first exploration of the possible applications of 
Gould’s ideas about constraints to the evolution and development of scien-
tific theories.

In a paper titled “The Evolutionary Biology of Constraint,” written 
around the same time as “The Spandrels of San Marco,” Gould distinguishes 
two kinds of constraints that the adaptationist tends to neglect:

One is that the possible routes of selection are channeled by inherited 
morphology, building material, and the amount and nature of variation 
itself. Though selection moves organisms down the channels, the channels 
themselves . . . impose primary constraints on the direction of change. The 
second is that selection on one part of a structure may impose a set of cor-
related and nonadaptive modifications of other parts  .  .  . Many features, 
even fundamental ones, may be nonadaptive (though not, to be sure, strongly 
unadaptive) either as developmental correlates of primary adaptations or as 
“unanticipated” structural consequences of primary adaptations themselves. 
(Gould 1980, 44)

The structural constraints most relevant to my arch-and-scaffold meta-
phor for theory change are of the first kind. The transition from the old 
quantum theory to matrix mechanics provides a nice example of this kind 
(cf. section IV). Consider perturbation theory in matrix mechanics devel-
oped in the famous Dreimännerarbeit (Born, Heisenberg, and Jordan 
1926). Perfectly adapted to the task at hand, one might think that it was 
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especially developed for matrix mechanics. It was not. The perturbation 
techniques of celestial mechanics had been transferred to atomic mechan-
ics in the old quantum theory of Bohr and Sommerfeld. Heisenberg’s 
(1925) Umdeutung, or “reinterpretation,” of classical mechanics to what 
would become matrix mechanics essentially also dictated how these per-
turbation techniques had to be “reinterpreted.” Recognition of this state of 
affairs helps us pinpoint what accounts for the continuity in the transition 
from the old quantum theory to modern quantum mechanics (cf. section 
II). Suman Seth (2010, 266) quotes Sommerfeld emphasizing that conti-
nuity in 1929: “The new development does not signify a revolution, but a 
joyful advancement of what was already in existence, with many funda-
mental clarifications and sharpenings.” Seth focuses on a continuity of 
scientific practice. What made this continuity of practice possible, how-
ever, was a continuity of mathematical structure and technique (Midwin-
ter and Janssen 2013, 146–47, 198).

The spandrels of San Marco from the title of Gould and Lewontin’s ar-
ticle are constraints of the second kind—more specifically, “‘unanticipated’ 
structural consequences of primary adaptations.” As they explain in the in-
troduction of their paper,

[s]pandrels—the tapering triangular spaces formed by the intersection of 
two rounded arches at right angles [see Figure 4.7]—are necessary architec-
tural by-products of mounting a dome on rounded arches. Each spandrel 
contains a design admirably fitted into its tapering space. An evangelist sits 
in the upper part flanked by the heavenly cities . . . The design is so elaborate, 
harmonious, and purposeful that we are tempted to view it as the starting 
point of any analysis, as the cause in some sense of the surrounding archi-
tecture. But this would invert the proper path of analysis. The system begins 
with an architectural constraint: the necessary four spandrels and their ta-
pering triangular form. (Gould and Lewontin 1979, 581–82, see also Gould 
2002, 1249–53)

As a simple example of “spandrels” in biological evolution, Gould and 
Lewontin point to the tiny front legs of Tyrannosaurus rex. One could try 
to give an adaptationist account of this odd feature—maybe they developed 
“to help the animal rise from a lying position” (Gould and Lewontin 1979, 
587)—but, given the homologies between T. rex and its ancestors (i.e., every 
bone in the skeleton of one corresponds to a bone in the skeleton of any other), 
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it is more likely that it was “a developmental correlate of allometric fields 
for relative increase in head and hindlimb size” (Gould and Lewontin 1979, 
587). Simply put: with a limited supply of bone material, for some parts to get 
bigger, other parts had to get smaller. The tiny front legs would then be an 
automatic by-product of evolution driven by constraints. As with the span-
drels of San Marco, this seemingly useless feature was subsequently given 
some purpose.56

This simple example can be used to give a (rough) definition of the con-
cept of a “spandrel” independently of its architectural origin. A spandrel is 
a feature that initially looks specifically designed for a particular purpose but 
that on closer examination is an inessential but inevitable by-product of a 
highly constrained development that was only subsequently given some 
purpose. Defined in this way, “spandrels” can also be recognized in in-
stances of scientific theory change. I can think of at least one example in the 
history of quantum theory.

On first encountering Bohr’s theory of the atom and the old quantum 
theory of Bohr and Sommerfeld that grew out of it, one might think that the 
notion of electron orbits is perfectly adapted to the job at hand—that is, the 
explanation of atomic spectra. Electron orbits represent the different energy 
states of electrons in atoms, and jumps between those energy states are as-
sociated with the spectral lines that were the main object of study in the old 
quantum theory. Electron orbits are so central to the old quantum theory 
that they came to dominate the theory’s iconography (Schirrmacher 2009). 
Using Gould and Lewontin’s metaphor, however, one can say that electron 
orbits were nothing but “spandrels” arising as by-products of the use of 
mathematical techniques borrowed from celestial mechanics in atomic 
physics. These techniques were very effective in determining the energy lev-
els of an electron in an atom. It was therefore only natural that elements 
associated with these techniques got transferred along with them. Planets 
orbiting the sun in the solar system thus became electrons orbiting the 
nucleus in an atom. This element, it seemed, could be put to good use. Energy 
states of electrons were represented in the old quantum theory by definite 
electron orbits. This representation, however, turned out to be highly prob-
lematic and was abandoned in the transition from the old to the new quan-
tum theory (see the fourth case study in section IV; Duncan and Janssen 
2007, 2014, 2015).57
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VI. The Arch-and-Scaffold Metaphor and  
Scientific Innovation
In this chapter, I showed that a metaphor of arches and scaffolds can be used to 
capture both continuities and discontinuities in various episodes in the early 
history of special relativity, general relativity, and quantum theory. The meta-
phor thus helps stake out a middle ground between the traditional cumulative 
picture of theory change and the discontinuous picture of paradigm shifts 
made popular by Kuhn’s Structure (though its author, as we saw in section II, 
vacillated between different and not necessarily compatible metaphors for the-
ory change). In four of my five examples, I indicated how the narrative could 
be constructed backward in time, which, I argued, is the most effective defense 
against the obvious charge of Whiggishness against the metaphor (section III).

I identified two specific ways in which a scientist can get from the 
theory playing the role of the scaffold in the metaphor to the theory playing 
the role of the arch and gave concrete examples of each in the five case studies 
in section IV.

1. Generalization. A scientist recognizes that a structure exhibited by 
the scaffold for a special case has broader significance.

1a. Einstein and Minkowski realized that the Lorentz invariance of 
Lorentz’s theory of electromagnetism transcends its connection 
with electromagnetism and reflects a symmetry of a new 
space-time structure (first case study).

1b.	Laue developed relativistic continuum mechanics by stripping 
Abraham’s electromagnetic mechanics of its electromagnetic 
particulars (second case study).

1c.	Heisenberg recognized that the way in which Kramers had used 
Bohr’s correspondence principle to construct a new formula for 
optical dispersion could be generalized to construct a new 
framework for all of physics (fourth case study).

1d.	Von Neumann unified wave mechanics and matrix mechanics by 
showing that their mathematical formalisms are different instan-
tiations of a more general formalism that he called Hilbert space 
(fifth case study).

2. Substitution. A scientist replaces the basic building blocks of the 
scaffold with new ones while leaving the structure built out of them 
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intact. An example of this in the evolution of technology would be 
the replacement of vacuum tubes by transistors in a logic board.

2a.	Einstein arrived at equations within hailing distance of the Einstein 
field equations of general relativity by changing the definition of 
the gravitational field in the formalism he had developed around 
the older Entwurf field equations (third case study).58

2b.	The central idea of Heisenberg’s Umdeutung paper was to replace 
classical quantities by two-index quantum objects soon to be 
recognized as matrices without changing the relations between 
those quantities given by the laws of classical mechanics (fourth 
case study).

2c.	One obtains the Hilbert-space incarnation of the Dirac-Jordan 
transformation theory by replacing transformation matrices by 
inner products of vectors in Hilbert space (fifth case study).

In this last example, however, I also noted that this is not how von Neumann 
introduced Hilbert space. Like John Stachel’s (2007) Newstein fable (see note 
35), this arch-and-scaffold story provided a counterfactual history that could 
be used as a foil for the actual history. The actual history in this case can also 
be captured in terms of the arch-and-scaffold metaphor. It is not clear, how-
ever, whether the best way to do so is in terms of a scaffold built before the 
arch, discarded when the arch could support itself, or in terms of a scaffold 
built after the arch, left in place to prevent the arch from collapsing. The for-
mer use of the metaphor is mine; the latter is a tweaked version of Hilbert’s 
metaphor of building a house before laying its foundations (see section II). In 
my version of the metaphor, Jordan’s transformation theory is the scaffold, 
and von Neumann’s Hilbert space-formalism is the arch. In the Hilbert-
inspired version, it is just the other way around. In this final case study, I 
ended up mixing these two metaphors in my attempt to characterize the re-
lation between these two general frameworks for quantum mechanics.

This should serve as a reminder that the arch-and-scaffold metaphor is 
an expository device—a gimmick, some might say—not an analytical tool. 
As an expository device, it does useful work, as is perhaps best illustrated by 
the general-relativity example (Janssen and Renn 2015). Both Einstein him-
self and later commentators have suggested that he found the Einstein field 
equations in November 1915 by switching from physics to mathematics at 
the eleventh hour. The arch-and-scaffold metaphor helped counter this 
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dramatic but highly misleading account by putting the alternative account, 
with Einstein doggedly pursuing his physics, in sharper relief.

At a more basic level, the arch-and-scaffold metaphor served to bring out 
common patterns in different instances of theory change that would have 
been much harder to spot without it. In the introduction, I broke down the 
metaphor into specific elements using a picture of the construction of the 
Waterloo Bridge (Figure 4.1). These elements worked well to draw special at-
tention to certain features of the examples I presented in section IV. The 
metaphor of Minkowski providing the springers and Laue providing the key-
stone of the arch of special relativity helped underscore the importance of 
relativistic continuum mechanics. The metaphor of Kramers and Heisenberg 
using the correspondence principle as their windlass nicely brought out the 
way in which several physicists used this principle in the period right around 
Umdeutung. But breaking down the metaphor in this way should not be mis-
taken for turning it into a philosophical tool for further analysis, either of 
the general pattern or of the individual examples. It remains an expository 
device similar to the curatorial devices used in museum exhibits of dino-
saurs (see section III).

For analytical tools we need to look elsewhere. As I suggested in sec-
tion V, they may be found in evolutionary biology, not in the population 
genetics of the Modern Synthesis but in the more recent tradition known 
as evo-devo. The concept of constraints looks especially promising, but ad-
ditional concepts will undoubtedly be needed. In the development of spe-
cial relativity, for instance, we saw that the transition from scaffold to arch 
involved grouping various quantities defined in three-dimensional space 
into new quantities defined in four-dimensional space-time. Can analo-
gous processes be identified in evolutionary biology? If so, can the con-
cepts developed to deal with those processes be customized to deal with 
their possible analogues in the evolution of theories? Such concepts could 
then be used to bring features glimpsed through the lens of the arch-and-
scaffold metaphor into sharper focus. In this way, my project could sup-
port broader efforts, already underway, to develop a new framework for 
cultural evolution, including the evolution of science, that draws on ad-
vances made in evolutionary biology over the past few decades (Caporael, 
Griesemer, and Wimsatt 2014; Laubichler and Renn 2015; Renn 2019). In 
the spirit of Hooke (see section III), I would be satisfied if the arch-and-
scaffold metaphor were to help scaffold this new framework and were then 
thrown away like Wittgenstein’s ladder.59
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	 5.	 The origin of this warning remains unclear (like the original about 
liberty rather than metaphor, which is often but wrongly attributed to Thomas 
Jefferson). Lewontin put it in quotation marks but did not give a source. In a 
book review decades later, Lewontin (2001) wrote: “As Arturo Rosenblueth 
and Norbert Wiener once noted, ‘The price of metaphor is eternal vigilance.’ ” 
This may be why the warning is often attributed to Rosenblueth and Wiener 
(1945), which is cited in Lewontin (1963), though not for this warning, which 
is nowhere to be found in it. I am grateful to Kris Fowler for her help in try-
ing to track down the source of this warning.
	 6.	 See Klein, Shimony, and Pinch (1979, 437).
	 7.	 See Kuhn (1984, 363), reprinted as a new afterword in the second edi-
tion of Kuhn (1978).
	 8.	 See also an unpublished essay on the “crisis of the old quantum the-
ory” (Kuhn 1966) and the videotape of a 1980 lecture at Harvard based on 
this essay. In the proceedings of the 1965 London conference, Kuhn (1970, 
258) wrote: “History of science, to my knowledge, offers no equally clear, de-
tailed, and cogent example of the creative functions of normal science and 
crisis.” In the Q&A following his 1980 lecture at Harvard, he reiterated that 
the crisis of the old quantum theory is “a textbook example . . . as described in 
Structure,” adding: “I don’t think there are many if any that are that good” 
(transcribed from the videotape of the lecture). In his interviews in the early 
1960s with surviving members of the first generation of quantum physicists 
for the Archive for History of Quantum Physics (AHQP) (Kuhn et al. 1967), 
Kuhn routinely asked his subjects (leading) questions about their awareness 
of this crisis at the time (Seth 2010, 265).
	 9.	 See also Renn and Rynasiewicz (2014, 38) and a more programmatic 
earlier paper, Renn (1993, 312–13).
	 10.	 See, e.g., Duncan and Janssen (2007, 2013, 2015); Joas and Lehner 
(2009); Seth (2010); Midwinter and Janssen (2013); James and Joas (2015); 
Jähnert (2016); Jordi Taltavull (2017); Blum et al. (2017).
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	 11.	 A new history of quantum mechanics of which I am a coauthor 
(Duncan and Janssen, in preparation) will also make use of this metaphor 
as is reflected in the subtitles of its two volumes. Following Kuhn’s exam-
ple, however, we largely refrain from explicitly using the metaphor in the 
text (cf. note 7).
	 12.	 I am grateful to John Eade, who maintains a website about the 
Thames, for drawing my attention to these bridges.
	 13.	 Neurath may have drawn inspiration from another ship metaphor: 
Does the ship of Theseus remain the same when all its parts are replaced? 
For discussion of this conundrum in the philosophy of identity, see, e.g., 
Pesic (2002, 15–23). I am grateful to Alexander Greff for this suggestion.
	 14.	 See Rabossi (2003, section II, 176–78) for a discussion of how W. V. O. 
Quine used Neurath’s ship metaphor in several places (e.g., Quine 1960, 
3–4) and combined it with his own metaphor of a “web of belief.” In the 
paragraph that ends with the ship metaphor in his book against Spengler, 
Neurath (1921, 198–99) actually uses language suggestive of Quine’s “web of 
belief” (“We always have to do with a whole network of concepts”), and the 
ship metaphor is introduced as a metaphor for the kind of holism found in 
Duhem, whom Neurath explicitly mentions at this point.
	 15.	 This oft-repeated but never properly sourced comparison is attributed 
to Niels Henrik Abel in some versions of the story and to Carl Gustav Jacob 
Jacobi in others.
	 16.	 See Michael Gordin’s (2014) review of Chang (2012) for some in-
teresting musings on Whiggishness, anti-Whiggishness, and anti-anti-
Whiggishness.
	 17.	 See Midwinter and Janssen (2013, 162–63) for further discussion of 
this passage.
	 18.	 Ofer Gal (2002) used Hooke’s terms as the title for a book on Hooke 
and Newton.
	 19.	 Einstein (1917b, 91) gives two examples: electrostatics and Max-
wellian electrodynamics and special and general relativity.
	 20.	 For discussion of this model and Lodge’s book, see Hunt (1991, 
87–95). Figure 4.3 is reprinted as Figure 4.7 on p. 92 of Hunt’s book.
	 21.	 See, e.g., the episode “The Betrayal” of the sitcom Seinfeld, which first 
aired November 20, 1997.
	 22.	 Cameron Lazaroff-Puck (2015) has shown that the characterization of 
the relation between Maxwell’s 1864–1865 and 1861–1862 papers by Whit-
taker and Kargon is misleading, but even on Lazaroff-Puck’s alternative 
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account, the relation between the two can still be captured in terms of arches 
and scaffolds.
	 23.	 I am grateful to Paul Brinkman, a leading historian of vertebrate 
paleontology, for helping me develop this analogy. One could develop a 
similar one about ancient sculptures.
	 24.	 For a discussion of composite dinosaur displays and the metal arma-
tures used to support them, see Brinkman (2010, especially 237–46).
	 25.	 See my home page for links to the slides of my lectures at a summer 
school in Tübingen in 2014 on all five examples and to the papers on which 
these lectures and section IV are based.
	 26.	 Based on Janssen (1995, 2002, 2009, 2017).
	 27.	 Jon Dorling (1976) showed how, in principle, Euclid could have ar-
rived at Minkowski space-time by dropping one of the axioms of his geo
metry (Janssen 2009, 49). Dorling’s analysis beautifully brings out the 
relation between Euclidean geometry and the pseudo-Euclidean geome-
try of Minkowski space-time. At the same time, it serves as a reductio of the 
notion that special relativity could have arisen prior to the development of 
electrodynamics in the nineteenth century.
	 28.	 The German original has Treppenwitz, which is based on the French 
idiom l’esprit de l’escalier, meaning “thinking of the perfect retort too late.” 
Here is an example in honor of singer-songwriter Glenn Frey (1948–2016), 
cofounder of the Eagles. On a flight from San Diego to Minneapolis in 
February 2013, the pilot told the passengers over the intercom that we 
could see Winslow, Arizona, from the plane. Upon arrival, the pilot joined 
the flight attendants saying their goodbyes as we got off the plane. I was 
already in the terminal when I realized what I should have said to him: 
“Take it easy.”
	 29.	 In the German original, it is unambiguous that which [der] refers to 
nucleus [der Kern] rather than to image of the world [das Weltbild].
	 30.	 Based on Janssen and Mecklenburg (2007) and Janssen (2009).
	 31.	 See, e.g., Miller ([1981] 1988, sections 1.8–1.14, 7.4, and 12.4) and 
Kragh (1999, chapter 8, “A revolution that failed”).
	 32.	 When Equation (1) is integrated over all of space, the second term 
on the right-hand side vanishes (as long as  drops off fast enough if we 
go to infinity), and what is left can be written in vector form as
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The total force on the charge distribution is the sum of this force and the force 
 coming from the external field. Since the Newtonian mass mN of the 

charge distribution is assumed to be zero, it follows from Newton’s second 
law, Ftot = mNa, that the total force,  vanishes. Using the 
expression for  above, we then find that

which has the same form as the Newtonian law, F = dp/dt = mNa (where we 
used that momentum is the product of mass and velocity, p = mNv, and that 
acceleration is the time derivative of velocity, a = dv/dt). This, then, is how 
Newton’s second law is recovered in Abraham’s electromagnetic mechanics 
(Janssen and Mecklenburg 2007, 108–10).
	 33.	 The energy-momentum tensor is sometimes called the stress-energy 
tensor or the stress-energy-momentum tensor. As Joe Martin once ob-
served (private communication), it is the Crosby, Stills, Nash, and Young of 
the tensors.
	 34.	 Based on Janssen and Renn (2007). See also Janssen (2005) and 
Renn (2006). In an article in Physics Today to mark the centenary of general 
relativity, the two of us explicitly used the arch-and-scaffold metaphor to tell 
the story of how Einstein found the field equations of general relativity (Jans-
sen and Renn 2015). An expanded version of this article will serve as the intro-
duction of a sourcebook we are preparing on the subject (Janssen and Renn 
2020).
	 35.	 Although I will not attempt to do so here, the early phase of the de-
velopment of general relativity can also be captured quite naturally in terms 
of arches and scaffolds. Einstein essentially generalized the metric field of a 
flat Minkowski space-time to the metric field of curved space-times, identi-
fying paths of extremal length as the trajectories of free-falling bodies. Such 
extremal paths are called metric geodesics to distinguish them from straight-
est paths, which are called affine geodesics. In the pseudo-Riemannian geo
metry of general relativity (pseudo in the same sense that the geometry of 
Minkowski space-time is pseudo-Euclidean), metric and affine geodesics 
coincide. The concept of an affine connection used to characterize affine 
geodesics was only introduced a few years after Einstein completed general 
relativity by the mathematicians Gerhard Hessenberg, Tullio Levi-Civita, 
and Hermann Weyl. John Stachel (2007) has written a counterfactual history 
of general relativity in which a fictitious nineteenth-century mathematician, 
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Weylmann (a composite of Weyl and Grossmann), rewrote Newton’s gravi-
tational theory in terms of an affine connection in Newtonian space-time (a 
reformulation actually provided in 1923 by the French mathematician Élie 
Cartan), which a fictitious early twentieth-century physicist, Newstein (a 
composite of Newton and Einstein), then reworked in a relativistic space-
time. Stachel’s counterfactual history, which helps put various aspects of 
the actual history in sharp relief, can be recast in terms of an arch (general 
relativity) built on a scaffold (Newton-Cartan theory). A clear exposition 
of the mathematics needed for such a recasting can be found in Fletcher 
(2017).
	 36.	 Hilbert had no such compunctions. He was, metaphorically speak-
ing (see section II), ready to move into new dwellings without checking the 
foundations first. In the fall of 1915, as I mentioned in section III, Einstein 
and Hilbert found themselves in a race for the field equations (Janssen and 
Renn 2015). In a letter to Sommerfeld of November 28, 1915, Einstein gave a 
detailed account of his route to these equations. That he did so in a letter to 
Sommerfeld, who knew both Einstein and Hilbert well, was probably at least 
in part to secure his priority. “It is easy,” Einstein told Sommerfeld, clearly 
referring to Hilbert, “to write down these generally-covariant field equations 
but difficult to see that they are a generalization of the Poisson equation [of 
Newtonian theory] and not easy to see that they satisfy the conservation 
laws” (Einstein 1987–2018, vol. 8, doc. 153).
	 37.	 A similar mechanism can be discerned in Planck’s attempts to find the 
formula for the spectral distribution of blackbody radiation. Blackbody radia-
tion is an ideal kind of heat radiation. The formula for its spectral distribu-
tion should tell us how much energy is emitted at each frequency given the 
temperature of the emitting body. In the late 1890s, Planck developed a 
framework that allowed him to derive this formula from an expression for 
the entropy of a resonator (which can be thought of as a charge on a spring 
with a particular resonance frequency) in interaction with the radiation. 
Initially, Planck (1900a) convinced himself that the second law of thermo-
dynamics uniquely determines the expression for this entropy, which when 
inserted into his general formalism gives the formula for the spectral distri-
bution of blackbody radiation proposed in 1896 by Wien. When the empiri-
cal adequacy of the Wien law was called into question shortly thereafter, 
Planck (1900b) discovered that this uniqueness claim was in error. The sec-
ond law of thermodynamics is compatible with a range of expressions for 
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the entropy of his resonators. A few months later, Planck (1900c) used this 
wiggle room to cook up a new expression for resonator entropy, which when 
inserted into the same general formalism gives a new formula for the spec-
tral distribution of blackbody radiation. This Planck law, as it came to be 
called, was in excellent agreement with the experimental data. Planck now 
found himself in the same predicament as Millikan a decade and a half later 
(see section II). His new formula for blackbody radiation, like Einstein’s for-
mula for the photoelectric effect, stood “complete and apparently well tested, 
but without any visible means of support” (Millikan 1917, 230). Planck im-
mediately set out to find such support. Supplying a derivation of the expres-
sion for the entropy of his resonators that led to his new formula for blackbody 
radiation, Planck (1900d, 1901) took the first steps toward quantizing the 
energy of these resonators (Kuhn 1978).
	 38.	 In 1917, Einstein added another term with the infamous cosmologi-
cal constant (Janssen 2014).
	 39.	 My home page has links to the video and the slides of the version 
presented at the symposium “General Relativity at 100” at the Institute for 
Advanced Studies in Princeton in 2015.
	 40.	 See the introduction of Janssen and Renn (2020) for such a com-
parison.
	 41.	 Lehmkuhl (2014, 317) cites a passage from a 1926 letter to Hans 
Reichenbach, in which Einstein uses language that is suggestive of the arch-
and-scaffold metaphor: “It is wrong to think that ‘geometrization’ is some-
thing essential. It is only a kind of crutch [Eselsbrücke] for the discovery of 
numerical laws” (Einstein, 1987–2018, vol. 15, doc. 249).
	 42.	 Based on Duncan and Janssen (2007). For a concise version of this 
story, see Midwinter and Janssen (2013, 156–62).
	 43.	 It is beyond the scope of this paper to evaluate the argument of Blum 
et al. (2017). I will just note that time is on their side. The Kramers-
Heisenberg paper on dispersion theory was written around Christmas 
1924. An important letter from Heisenberg to Ralph Kronig, documenting 
key steps toward the Umdeutung paper, was not written until early June 
1925. It is implausible, on the face of it, that nothing of consequence would 
have happened between January and June. Heisenberg may thus already 
have been rewriting history when he gave dispersion pride of place in his 
Umdeutung paper (just as Einstein, as we saw in the preceding case study, 
was already rewriting history when he suggested in November 1915 that an 
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eleventh-hour switch from physics to mathematics had led him to the field 
equations of general relativity). This illustrates the residual dangers of the 
benign Whiggishness still lurking in my use of the arch-and-scaffold meta-
phor (see section III).
	 44.	 For the history of dispersion theory in the period of interest here, 
roughly from 1870 to 1925, see Jordi Taltavull (2017).
	 45.	 Duncan and Janssen (2007) and Midwinter and Janssen (2013) focus 
on these particular correspondence-principle arguments. See Rynasiewicz 
(2015) and Jähnert (2016) for broader accounts of the correspondence prin-
ciple and its evolution.
	 46.	 Quoted and discussed in Duncan and Janssen (2007, section 3.5, 
593–97; see also section 4.3, 613–17).
	 47.	 This is the key to the resolution of the paradoxical statement by 
Dirac quoted in section II.
	 48.	 An instructive application of the Umdeutung strategy outlined in 
these last two paragraphs is Jordan’s derivation of a formula for the mean-
square fluctuation of the energy in blackbody radiation in Born, Heisenberg, 
and Jordan (1926), the sequel to Heisenberg (1925) and Born and Jordan 
(1925), known as the Dreimännerarbeit. For a detailed reconstruction of Jor-
dan’s derivation, see Duncan and Janssen (2008).
	 49.	 Based on Duncan and Janssen (2009, 2013).
	 50.	 I also suppress Jordan’s notion of a “supplementary amplitude” 
[Ergänzungsamplitude] (Duncan and Janssen 2013, 189 and section 2.4, 
217–21).
	 51.	 The “supplementary amplitude” (see note 50) was an (unsuccessful) 
attempt to avoid such restrictions.
	 52.	 Norton (2014, 685–87) uses the arch-and-scaffold and cathedral meta
phors on an even larger scale to capture the construction of the totality of 
our empirical knowledge (cf. section III).
	 53.	 Isaacson’s overall account of the digital revolution fits nicely with the 
accounts of the relativity and quantum “revolutions” sketched in this paper. 
This is obscured by the unfortunate choice of the book’s subtitle, the nega-
tion of which would actually have provided a more accurate characterization 
of its contents: “how [it was not just] a group of hackers, geniuses, and geeks 
[who] created the digital revolution.”
	 54.	 The same can be said about the bold conjectures of Popperian falsi-
ficationism or the hypotheses tested according to the rules of hypothetico-
deductivism or Bayesianism.
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	 55.	 Gould’s dissatisfaction with the dominant selectionist paradigm was 
fueled by outrage over its shoddy applications to human populations (Gould 
1981; cf. Kevles 1985, 284).
	 56.	 Many more and much better examples can be found in Shubin (2008).
	 57.	 Quantum mechanics, as it is taught and practiced today, may provide 
another example of a spandrel. In the old quantum theory, the spandrel was the 
misleading visualization of energy levels as electron orbits that was imported 
into the theory along with the mathematical techniques Schwarzschild, Som-
merfeld, and others borrowed from celestial mechanics. One could argue (see, 
e.g., Bub 2019) that wave mechanics, which remains a popular form of quantum 
mechanics, likewise provides a misleading visualization of quantum states as 
wave functions, which was imported into the theory along with the mathemat-
ical techniques Schrödinger borrowed from wave optics and analytical me-
chanics to develop his optical-mechanical analogy (Joas and Lehner 2009).
	 58.	 I briefly described a similar example in Planck’s work on blackbody 
radiation (see note 37).
	 59.	 The arch-and-scaffold metaphor will also have done its job if it helps 
put to rest the question of whether science develops continuously or discon-
tinuously. That question, in the end, only distracts from a more fundamen-
tal one: Where is scientific novelty coming from? This is where population 
genetics seems to have seriously tripped up Kuhn. Evo-devo should provide 
a much better guide in the search for answers to this question.
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