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“Trillian, this is my semi-cousin Ford, who shares three of the same mothers 
as me . . .”
—Zaphod Beeblebrox, The Hitchhiker’s Guide to the Galaxy

In this chapter, we argue that ideas and inventions—like 
Zaphod—can have many mothers. This is not always the default assump-
tion. Powerful tools from macroevolution have been used to reconstruct 
cultural phylogenies (“trees”) in a variety of spheres (O’Brien et al. 2013), 
including language (Gray, Drummond, and Greenhill 2009), crafts (Teh-
rani and Collard 2002), and lithic technology (O’Brien, Darwent, and 
Lyman 2001). In order for these tools to retrieve accurate genealogies, how-
ever, the underlying patterns of cultural evolution must fit the assumptions 
of the biological methods—above all, the predominance of vertical informa-
tion transfer (from “mother” to “child”) and tree-like branching. Such 
phylogenetic methods treat the horizontal transfer of information from 
other lineages as contaminating noise. For this reason, the application of 
phylogenetic methods to prokaryotic taxa has been challenged. Far from be-
ing “noise,” horizontal transfer is common among these organisms (Doo-
little and Bapteste 2007).

Horizontal transfer is common in human culture, too, thanks to our rich 
communicative capacity and increasingly frequent population movement. In 
fact, scholars of modern technology often assume recombinant processes and 
hence substantial horizontal transmission (Arthur 2009; Wimsatt 2013b). 
This common assumption suggests that phylogenetic methods are not 
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always applicable to cultural data, just as they have limited application to 
prokaryotes. In a further contrast with biology, contemporary cultural evo-
lution often leaves a detailed and relatively complete “fossil record” of past 
forms. Standard phylogenetic methods are designed to work without fossil 
data and typically only use them, if at all, for calibration (Felsenstein 2004; 
Gray and Atkinson 2003). More sophisticated methods that fully incorpo-
rate available fossil data (Fisher 2008; Huelsenbeck and Rannala 1997) exist 
but are rarely deployed.

In this chapter, we sketch an exploratory framework that learns from this 
rich historical data to infer the possible histories and patterns of cultural in-
heritance, beginning with which and how many “parents” contribute to 
each offspring. Simple vertical transfer is now treated as a special case of com-
binatorial evolution (Arthur 2009; Wimsatt 2013a), in which one or more 
parents from distinct lineages provide the raw materials involved in spawn-
ing a new “child,” which could be an invention, an organization, or a literal 
developing human being. We focus on the directed acyclic graphs (DAGs) 
that best trace the inheritance of known features and explain their observed 
distribution across cultural types. Temporal and geographical constraints on 
the space of plausible histories allow us to enforce the time directedness and 
spatial localization of inheritance. We describe a formalism that assumes in-
dependence in the choice of parents, but this can be relaxed to allow non-
independence and structured parent choice. Groups of parents can “mate” 
with each other (or be “chosen” by offspring) according to a range of crite-
ria, including unobserved but inferred fitness (i.e., appeal), past fecundity 
(i.e., number of offspring), or population structure (e.g., different disciplines 
or craft traditions that limit interbreeding between lineages). We describe 
both parsimony-based and probabilistic, generative approaches. Probabilis-
tic methods are especially valuable when dealing with historical phenom-
ena because they allow us to encode our assumptions about the underlying 
process and then reason rigorously from the data to a universe of plausible 
historical trajectories. In other words, these methods demand and leverage 
“new conceptual frameworks” to tackle the “massive new data sets” that are 
often available to trace the trajectories of cultural evolution (see chapter 1).

We show that our approach can apply to a wide range of cultural phe-
nomena, including the evolution of technology, organizations, genres, and 
art forms, as well as the changing cultural constitution of individual human 
beings—that is, it can be used to model the “sequential dependencies in the 
acquisition of cultural traits during development” (see the introduction). We 
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conclude by describing the relationship between the modes of cultural in-
heritance revealed by this approach (branching or reticulate) and the mix-
ture of transmission-isolating mechanisms (TRIMs) (Durham 1991) and 
transmission-accelerating mechanisms (TRAMs) that together shape inher-
itance and pattern cultural evolution.

This chapter responds to the key question raised by Love and Wimsatt 
in their introduction to this volume: “How to characterize cultural heredity 
with multiple parents.” In answering that question, we embrace core insights 
about the distinctive internal and external structures (Wade 2016) that 
influence cultural evolution: “Sequential dependencies in the acquisition of 
cultural traits” and “the roles of external structure” like institutions, organi-
zations, and infrastructures in setting up the population structure that shapes 
cultural evolution (see the introduction by Love and Wimsatt; chapter 1 by 
Wimsatt).

Our approach incorporates several of the elements of an “adequate the-
ory of cultural evolution” outlined by Wimsatt (chapter 1). It explicitly ana-
lyzes the complex lineages of “ideational, behavioral, and material items, 
which are capable of being modularly decomposed or chunked and black 
boxed hierarchically.” It can be used to model the complex cultural growth 
of “developing biological individuals” as well as organizations. Finally, in our 
analysis of TRIMs and TRAMs, we show how institutions and infrastruc-
tures can work together to produce and maintain “cultural breeding popu-
lations” and structure the processes of inheritance and invention by which 
culture evolves. In other words, it represents a sustained conceptual and 
mathematical effort to think “beyond the meme.”

The Question Concerning Phylogenies
Are cultural phylogenies possible? In other words, are there cultural units 
whose evolution traces tree-like topologies? As recently as 1997, this was an 
open question (Boyd et al. 1997). Less than twenty years later, it has been an-
swered decisively in the affirmative. Formal methods for phylogenetic infer-
ence, including parsimony, maximum likelihood, and Bayesian inference, 
have been applied to a range of cultural forms, from languages (Gray, Drum-
mond, and Greenhill 2009) to projectile points (O’Brien, Darwent, and 
Lyman 2001) and textiles (Tehrani and Collard 2002); see O’Brien et al. 
(2013) for an extensive list. Explicit tests using a standard goodness-of-fit 
metric (the retention index) suggest that trees fit cultural data just as well as 
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they do biological data (Collard, Shennan, and Tehrani 2006). What is the 
alternative to the branching, tree-like pattern of cultural inheritance? Re-
ticulation: a topology in which lineages not only split but blend, join, and re-
combine. Given that cultural phylogenies are indeed possible, why did we 
(and should we) consider reticulation?

Reticulation is plausible for a simple reason: the capacity to generate par-
ticular cultural traits moves with relative ease from one living individual to 
another. In other words, such traits or transmissable elements (Wimsatt 
2013a) are capable of horizontal transmission between cultural lineages. A 
small note on terminology: when discussing the transmission of genetic in-
formation, biologists typically refer to transfer. In vertical transfer, genetic 
information flows from parent to offspring via reproduction. This preserves 
the integrity of lineages and ultimately builds up tree-like, branching topol-
ogies. In horizontal transfer, genetic information flows nonreproductively 
from one individual to another, potentially between distinct lineages. This 
breaks down the integrity of lineages and, if common, produces highly re-
ticulate, recombinant topologies.1 In both cases, the underlying genetic 
information is assumed to transfer unaltered, although under special cir-
cumstances it may undergo simultaneous mutation or recombination.

When discussing the flow of cultural traits (Mesoudi 2011), evolutionary 
anthropologists often refer to transmission rather than transfer, making an 
analogy to epidemiology. In vertical transmission, cultural traits flow from 
parent to child. In horizontal transmission, cultural traits flow between a pair 
of individuals, who may be unrelated.2 Vertical transmission helps to pre-
serve the integrity of cultural lineages. Horizontal transmission can produce 
distinct and well-separated lineages, as long as the reach of horizontal trans-
mission is limited—for example, via TRIMs (Durham 1991) that maintain 
separate cultural breeding populations (see chapter 1). In contrast to the ge-
netic case, however, the “flow” of cultural traits can be much more complex 
than the “flow” of genetic information. While genetic information can be 
copied with minimal error, transmitting the capacity to manifest particular 
cultural traits is nontrivial. Far from mere copying (as in simple memetic 
pictures), it often involves detailed reconstruction and reverse engineering 
(Claidière, Scott-Phillips, and Sperber 2014) and can depend on the prior ac-
quisition of other cultural traits that scaffold sequential acquisition (see the 
introduction by Love and Wimsatt, as well as chapter 1).

Despite the need for reconstruction and reverse engineering, the hori-
zontal transmission of cultural traits from person to person can be relatively 
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easy, and hence the transmission of cultural traits from one cultural “lin-
eage” to another becomes possible. As Stephen J. Gould (2010) quipped in 
an oft-cited quote, “Five minutes with a wheel, a snowshoe, a bobbin, or a 
bow and arrow may allow an artisan of one culture to capture a major 
achievement of another.” While Gould underestimates the difficulty of in-
ferring a generative procedure from an artifact, five years as apprentice to 
an artisan from another culture probably suffices for the horizontal, cross-
cultural transmission of many major technical achievements (see chapter 8). 
Given the right scaffolding3 and enough time, a novice will acquire the skills, 
knowledge, and practices that make her “infectible” by a new technology 
(Wimsatt 2013a).4 The same is true for other cultural traits, like complex be-
liefs. For this reason, proponents of cultural phylogenetics are careful to 
emphasize that tree-like structures may not always be appropriate (Cochrane 
and Lipo 2010). As we noted above, tree-like structures are not always suit-
able for biological evolution either, as in the case of bacteria, with their ram-
pant horizontal transfer of genetic information via plasmids, transformation, 
or transduction (Gogarten and Townsend 2005). Whether phylogenetic trees 
can accurately represent a particular evolutionary history is therefore an em-
pirical question, not a theoretical one. Trees provide a reasonable represen-
tation of particular histories of cultural transmission when TRIMs (Durham 
1991) limit or prevent cross-lineage transmission for the trait in question and 
thus maintain branching as the dominant mode of cultural macroevolution 
(at a certain level of analysis).

As Mesoudi (2011) notes, however, the TRIMs that apply to projectile 
points and textiles (e.g., language, limited intergroup contact, and ethnocen-
trism) are unlikely to apply directly to the evolution of scientific ideas and 
technological inventions—although related social mechanisms might, along 
with the need for scaffolded skill acquisition (Goodwin 2017).5 Instead, the 
picture presented by the literature on science and technology is positively pro-
miscuous, with recombination an essential and often primary process (Flem-
ing and Sorenson 2001, 2004; Uzzi et al. 2013; Arthur 2009; Foster, Rzhetsky, 
and Evans 2015). This implies that reticulation should be common; that ideas 
and inventions—like Zaphod in our epigraph—can have many mothers.

Before proceeding, an important caveat. We note that vertical and hori-
zontal transmission at the level of people is logically independent from ver-
tical and horizontal transmission at the level of specific cultural traits or 
products. For example, the degree to which a biological individual’s reper-
toire of cultural traits or products (e.g., ideas, beliefs, practices, technologies) 
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emerges within a social lineage or across them is independent of whether spe-
cific, novel instances of cultural traits or products are produced through 
conservative, vertical tinkering or liberal, horizontal recombination. We 
focus here not on the vertical or horizontal transmission of cultural traits 
from person to person (though see section 7) but on the vertical or horizon-
tal transmission of elements from one cultural trait to another. Still, the two 
may be empirically related. If the capacity for horizontal transmission from 
person to person were limited, then possibilities for the combinatorial gen-
eration of new culture would be highly constrained. As a result, promiscu-
ous horizontal transmission between people is a necessary but not sufficient 
condition for promiscuous combinatorial invention in which cultural arti-
facts have multiple parents.

Tackling Multiple Inheritance
This picture of promiscuous combinatorial invention suggests that standard 
methods of phylogenetic inference will often produce distorted pictures of 
the pattern of cultural evolution in contemporary science and technology.6 
It is worth noting that some extensions of phylogenetic methods permit hor-
izontal transmission between lineages (Nicholls and Gray 2006). Inference 
can be robust to moderate levels of horizontal transmission (Greenhill, Cur-
rie, and Gray 2009), and network-based methods can detect signals of re
ticulation directly (Lipo 2006; Gray, Bryant, and Greenhill 2010; Huson 
Rupp, and Scornavacca 2010). Ignoring reticulation, however, runs the risk 
of distorting a true history by forcing multiple inheritance into a branching 
tree. Network-based methods, on the other hand, are essentially exploratory. 
Because they lack an underlying generative model (but see Wen, Yu, and 
Nakhleh 2016), they can neither draw on existing knowledge about the in-
ventive process nor represent uncertainty or improve with additional data 
(Ghahramani 2015). Nevertheless, cultural evolution is sufficiently complex 
(see chapter 1) that all models are distortions (Wimsatt 2002), and there is 
no one “true” representation for every trajectory. As Doolittle and Bapteste 
(2007) note, “Different evolutionary models and representations of relation-
ships will be appropriate, and true, for different taxa or at different scales or 
for different purposes.” We thus embrace pattern and process pluralism in 
cultural just as in biological evolution.

Pattern pluralism aside, traditional phylogenetic methods do not take ad-
vantage of a distinctive feature of contemporary technological evolution: the 
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incredibly rich “fossil” record of past forms, which often possesses detailed 
information about timing, sequence, and spatial location (Evans and Foster 
2011). In biology, such information is often sparse and always hard to come 
by. It usually involves a lot of digging and scraping. For this reason, phylo-
genetic methods are generally designed to make inferences in the absence of 
extensive evidence about past forms. Available information can be used to 
“root” trees with an out-group or to calibrate particular branching points 
(Felsenstein 2004). The latter application is relatively common in the recon-
struction of linguistic phylogenies, where fossil traces, for example, writ-
ten materials that have persisted to the present, are exceedingly rare (see, for 
example, Gray and Atkinson 2003). Biologists have also developed parsi-
mony (Fisher 2008) and likelihood-based (Huelsenbeck and Rannala 1997) 
methods that penalize trees if they infer ancestral states with no trace in the 
fossil record.

We set these methods aside for two reasons. First, they are fundamentally 
tree-based and hence suffer the same problem of forcing multiple inheritance 
onto branching topologies.7 Second, they depend on the inference of past 
forms. Yet past forms are densely documented in scientific and technological 
data sets (see chapter 6), thanks to ongoing incentives to publish (Merton 
1973) and patent (Owen-Smith and Powell 2001). This rich history is ripe for 
analysis, thanks to the increasing electronic availability of data (Evans and 
Foster 2011). Scholars of technological evolution should use it, and phyloge-
netic methods are simply not designed for situations in which history is as 
richly and densely documented as it is in science and technology. Taking this 
record into account will dramatically improve our characterization of the 
process that generated it, as well as our prediction of what will come next.

Finally, ancestral cultural forms can influence the present in a way that 
ancestral biological forms cannot. When a species goes extinct, its distinct 
genetic information is lost forever, along with its phenotype, behavior, and 
entailed ecological interactions, the loss of which can tip other species to-
ward extinction. When an idea or technology “goes extinct”—in the sense 
that it no longer occupies any minds or has a physical presence in the con-
temporary population—it can nevertheless contribute to a new technology 
or idea. If an artifactual or textual trace of the extinct idea remains, contem-
porary inventors can draw components, features, or inspiration from it 
(Tёmkin and Eldredge 2007). Because any act of cultural transmission al-
ways involves some inference and reconstruction (Claidière, Scott-Phillips, 
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and Sperber 2014), even limited traces of an earlier idea or technology can 
contribute ingredients to a novel cultural unit decades or even centuries later.

These considerations suggest that if we take the possibility of multiple 
inheritance seriously, we should develop models that allow both reticulate 
patterns of multiple inheritance and tree-like patterns of descent with mod-
ification. In other words, we should go beyond the inference of phylogenetic 
trees. In the rest of this chapter, we introduce exploratory and model-based 
methods that can detect and describe multiple inheritance in densely sam-
pled cases of cultural evolution. These methods themselves have multiple par-
ents; in addition to the phylogenetic tradition, they draw on ideas from latent 
variable modeling (Blei 2014), Bayesian nonparametric models (Gershman 
and Blei 2012; Ghahramani 2013), probabilistic machine learning (Ghahra-
mani 2015), and network analysis (Newman 2003). In the following sections, 
we provide a high-level description of these methods and the underlying 
ideas and intuitions. The appendix gives specific mathematical descriptions 
of several methods. We also discuss the philosophy behind inference using 
probabilistic models. We close with a reflection on the role of entrenchment 
and scaffolding in the tempo and mode of technological evolution.

Before proceeding, we describe in words and a little notation our gen-
eral picture of the evolution of ideas and technologies. Imagine that we ob-
serve an invention at time tj. Given our observation, we know that at some 
earlier time (tj − є) a “creative unit” (which could be an individual inventor/
scientist or a team) must have assembled (consciously or not) a set of influ-
ences Pj. For example, the Bessemer process of steel production involved 
removing impurities from pig iron with oxidation by blowing air through 
the molten metal (Birch 1967). “Parental influences” here include pig iron, 
the oxidation process, and, ultimately, the use of dolomite or limestone lin-
ings for the Bessemer converter. Taken together, these influences Pj provide 
the raw material from which the invention was assembled; hence the set Pj 
contains the parents of the new invention j. If cultural evolution in this par-
ticular domain is dominated by vertical transmission and descent with 
modification (i.e., tinkering), then Pj may only have one member, and the 
invention j only has one parent (for example, the inventor slightly adjusts the 
technique typically used to process a particular stone). If cultural evolution 
is dominated by horizontal transmission and is combinatorial, then Pj may 
have several members, and the invention will have multiple parents. Note 
that, in principle, any invention that precedes invention j in time is a possible 
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parent. The set of all possible parents is denoted . It is time ordered (each 
earlier invention is time stamped). Depending on the typical length of the 
inventive process and the typical difficulty of mastering a new invention, it 
may take some time before a given invention p can become a parent. This 
implies a lower bound on the difference between the time of invention tj and 
the time of observation of an allowable parent tp, such that some time Δtjp 
must have passed before p is a possible parent of j.

Any idea or technology may be coarsely characterized by its elementary 
building blocks; as Wimsatt notes in his discussion of transmissible or rep-
licable elements (chapter 1), TREs can be “modularly decomposed.” The out-
come of this modular decomposition might be the components that make 
up an invention or the concepts that make up the idea of a scientific paper. 
We refer to these parts as features, and the set of all features as .8 This char-
acterization is a necessary precondition for analysis, but it is more than a 
useful fiction: for any particular community of practice, the relevant coarse-
graining—the “principles of vision and division” (Bourdieu 1990; Foster, 
Rzhetsky, and Evans 2015)—will be relatively consistent.9

For any invention j, each of its parents  is characterized by its own 
set of features . To create a new invention j, the inventor selects its 
features from the set of features possessed by its parents. This set is simply 
the union of all the parental feature sets: . Occasionally, an inven-
tion introduces an entirely novel feature rather than just drawing on the fea-
tures of the past. At other times, an invention may “bundle” together several 
preexisting features (from one or several parents) into an effective, integrated 
unit. This new unit becomes a “feature” available to future inventions—its 
constituent subfeatures are henceforth sampled together. This process is 
called black boxing (Latour 1987). To embrace these generative possibilities, 
our model must allow inventors to black box or introduce a novel feature with 
some probability (which will typically be small in cases where invention is 
largely combinatorial).

Note that this inventive process can generate a range of inheritance path-
ways and hence topologies. It can describe unilineal inheritance, in which a 
single (cultural) parent is selected and (perhaps) slightly modified. It can also 
describe multilineal inheritance, in which multiple (cultural) parents are se-
lected and their features recombined. Starting from a picture of invention 
that is entirely agnostic about tinkering versus recombination is essential if 
we are to let the rich traces of inventive activity reveal the underlying modes 
of inheritance and pattern(s) of technological evolution. Such an agnostic 
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analysis can also provide data-driven hints as to the modes and mechanisms 
of cultural evolution.

Before defining a model-based approach for studying multiple inheri-
tance, we describe some exploratory methods for tracing multiple inheritance 
in densely sampled, time-ordered data. These methods are much simpler 
than the model-based approach but require further assumptions about 
the inventive process.

Generalizing Parsimony
Parsimony-based methods provide powerful exploratory tools for construct-
ing possible phylogenies (O’Brien et al. 2013). Here we describe methods 
than can reconstruct possible reticulated histories (directed graphs) in the 
case of multiple inheritance. As a modeling strategy, parsimony emphasizes 
simplicity; it seeks the minimal explanation for the observed facts. In phy-
logenetic reconstruction, the present distribution of features (genetic or mor-
phological) provides the observed facts; the phylogenetic tree provides a 
potential explanation for those facts. In seeking the simplest explanation, 
parsimony methods minimize the number of genetic changes implied by the 
proposed tree. A tree that can explain the present distribution of features 
with five changes is preferable to a tree that requires six. The intuition un-
derlying this simplicity criterion is quite plausible: not only are fewer changes 
“simpler” in an absolute sense, but every change (mutation) is a low-probability 
event. Hence, we should generally seek explanations for present facts (i.e., 
trees) that minimize the number of such events (note that this basic idea is 
also used in some approaches to phylogenetic networks; see Huson and 
Scornavacca [2011]).

What is the analog of this parsimony principle in our generalized model 
of inheritance? Recall that in our model, new inventions sample over the fea-
tures of past inventions. All else being equal, it probably takes more time 
and effort to sample from three past inventions than from two. Hence, the 
most parsimonious or simplest explanation might minimize the number of 
past inventions needed to account for the features of the present invention. 
On the other hand, consider the following scenario. A new invention has six 
features. Four of those six features can be found in a single predecessor; the 
remaining two can be found separately in several possible predecessors. This 
history would lead to three “parents.” Alternately, three of the features can be 
found in a single predecessor and the remaining three in another predecessor. 
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This history would lead to two parents. Which history provides the simplest 
explanation? Naive parsimony (i.e., minimizing the number of parents) 
ignores the fact that a single parent can account for the majority of features 
in the new invention; in such ambiguous cases, it’s quite likely that there are 
many ways to account for the residual features, whereas there might be only 
one history that splits all features across two parents. We balance these 
various nuances of the parsimony principle through a greedy inventive pro-
cess. In essence, we assume that at any stage of invention inventors draw as 
many features from a parent as possible.10 In particular, inventors tend to 
draw a large number of features from one parent and a small number from 
several others, rather than drawing a moderate number from two or three. 
This greedy assumption also makes the problem more computationally trac-
table, as we do not have to search over different combinatorial histories.11 
At every step, we pick the simplest explanation—the parent that accounts 
for the most features.12

We now describe how to implement this parsimony principle in practice. 
Before implementing the following algorithm, we first reduce the feature sets 
of all inventions by removing any novel features—features that appear for 
the first time in that particular invention. These features cannot be accounted 
for by the past. In cases where the same novel feature appears in multiple 
inventions in the same time slice, we treat those features as novel for all in-
ventions. Now, we execute the following algorithm for each invention j. Note 
that this algorithm can be executed independently for every invention.

Parsimony Algorithm
1. �Establish the set of possible parents. This may be the set of all earlier 

inventions, or it may have some restrictions (e.g., all inventions more 
than six months older than the focal invention).

2. �For each possible parent, count up the number of features in the focal 
invention that could have been inherited from that parent.

3. �Add to the set of j’s parents whichever prior invention explains the most 
features (and remove that invention from the set of possible parents). If 
there are multiple equally explanatory inventions, we can implement 
additional principles of simplicity as desired. For example, we can prefer 
the most recent ancestor or the ancestor with the smallest spatial 
distance, social distance (e.g., as computed in a social network), or 
cognitive distance (e.g., as computed in a network or space of skills, 

Copyright 2019 by the Regents of the University of Minnesota



	 Promiscuous I n v en tions	 211

ideas, etc.). If all parsimony principles have been exhausted and multiple 
possible parents remain, choose at random.

4. �Eliminate from the feature set of the focal invention all features that have 
been explained by the parent set.

5. If features remain to be explained, go back to step 2. Otherwise, stop.

We repeat this procedure for all j to reconstruct a parsimonious history 
for our observed technologies. This history will be a directed acyclic graph 
(DAG); we establish the convention that arcs run to an invention j from its 
parents p, k, m, and so on to represent the flow of ideas from past to pres-
ent.13 This directed graph can be weighted, with arc weights counting the 
number of features inherited from each parent. Because of the random steps 
in the construction of the DAG, we should construct multiple complete his-
tories for a given data set and look at properties of the ensemble, which is 
only necessary if the random number generator is called. Because the re-
construction process is independent for each distinct invention, it can be 
trivially parallelized. See appendix for mathematical details.

Parsimonious Insights
What can we learn from the DAGs reconstructed via parsimony? First, re-
member that we are trying to make inferences about an unobserved history 
of invention and inheritance from richly sampled but incomplete evidence. 
In general, we will not have traces of the inheritance process (i.e., that the 
inventors of technology j drew on technologies p, k, and m); even when we 
do, those traces are incomplete and potentially biased. What we do have is a 
record of what technologies with what features exist at what times. Our in-
ferences are also shaped by assumptions about the inventive process that 
has generated this record—namely, that it is a greedy local search, in which 
inventors sequentially sample the space of possible parents and prefer to 
extract as much as possible from each parent along the way, until their 
new invention is complete.14

We can mine several insights from the weighted DAG that represents a 
parsimonious reconstruction of cultural inheritance under this model of 
technological evolution and the inventive process. First, we can ask what frac-
tion of “explicable” features in each invention is inherited from each parent. 
For a particular invention, this tells us whether most of its features come 
from a single parent or whether its features can be better explained by even 
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sampling from several parents. Consider the largest such fraction for each 
invention; call this the primary inheritance. The frequency distribution of 
primary inheritance reveals how many inventions are largely explicable with 
a single parent and how many require multiple parents to explain their fea-
tures (see Bedau, chapter 6, for an empirical analysis of multiple parentage 
in U.S. patents). From this distribution, we can obtain a good guess at the 
dominant mode of cultural inheritance in a given domain and make infer-
ences about the dominant mode of cultural evolution. If the distribution is 
peaked at large values (close to one), then the mode of inheritance is primar-
ily unilineal, and evolution proceeds via descent with modification. We can 
turn the DAG into a tree by retaining the highest-weight incoming arc for 
each node. This tree likely represents a good first approximation of the in-
heritance pattern. At the very least, it suggests that vertical transfer and de-
scent with modification together provide a parsimonious explanation for 
the facts. If the distribution is spread out across possible fractions—or even 
peaked at lower values—then we have evidence that the inheritance pattern 
is reticulate, involving multiple parents, and that the mode of evolution may 
be combinatorial. Given that our greedy reconstruction process is biased to-
ward trees, a broad distribution of primary inheritance provides substantial 
evidence for reticulate cultural evolution and multiple parentage.

Second, consider the number of features present in a given invention p. 
These are the features that could be passed on to any descendants. In a given 
reconstruction, we can compute the fraction of such features that are actu-
ally passed on to each descendant; call this the primary contribution. The 
mean and mode of this quantity, computed over all descendants, can tell us 
whether the features of p are typically inherited as a block or whether they 
are separable and used as a selective smorgasbord. While block inheritance 
of features happens in biology (e.g., genes are bundled together into chro-
mosomes), cultural and especially technological evolution is distinctive in 
its capacity to create such building blocks from more primitive pieces; this 
is a key part of the internal or endogenetic structure of cultural inheritance 
(see the introduction by Love and Wimsatt).15 We briefly discuss how such 
black-boxing events can be detected in parsimonious DAGs.

Black Boxing
We can use the two measures described above to identify potential moments 
of modularization or black boxing (Latour 1987). In practice, black boxing 
may involve miniaturization (allowing a bundle of features to “fit” in new 

Copyright 2019 by the Regents of the University of Minnesota



	 Promiscuous I n v en tions	 213

places); compression (simplifying components, removing redundancies, and 
integrating parts to maximize efficiency); autocatalysis (relations of mutual 
dependence across parts that sustain and reproduce coparticipation; see 
chapter 11 of this book); and the streamlining and/or standardizing of in-
put and output (making it easier for the set of features to recombine; see chap-
ter 2 for the importance of standardization to combinatorial processes in 
genomics and proteomics). The key signature of black boxing for a particu-
lar invention p is the relative size of its (average) primary contribution, com-
pared to all other inventions. If recombinant evolution is typical, the average 
size of the average primary contribution will be relatively low. When an in-
vention has an above-average primary contribution across descendants, 
this strongly suggests that its components are black boxed and drawn upon 
as whole units rather than as a set of parts. Now consider the primary in-
heritance of a specific invention k. If the primary inheritance is low, then in-
vention k has sampled from several sources. When the primary inheritance 
is low and the primary contribution is high, this suggests that k has drawn 
on several parents and bundled the parts together into a unit with emergent 
value.16 There is a synergistic, nonadditive, epistatic interaction among the 
parts, which leads others to select the whole black box. We can validate this 
intuition using related traces. For example, black-boxing events will likely 
correspond to cases in which the citations to a black-boxing patent super-
sede and largely replace citations to the patents (and separable components) 
on which it draws (Funk and Owen-Smith 2016).

Probabilistic Models, Possible Histories
Before discussing model-based approaches to the study of cultural genealo-
gies, we pause to discuss the role of models, uncertainty, and evidence. Des
pite the rich electronic record of inventive activity in science, technology, 
and other cultural domains, much remains unknown. Specific influence 
pathways may be discoverable, but only after considerable effort—for exam-
ple, using traditional historical methods. Hence, the principled integration 
of model and evidence is important and the rigorous representation of un-
certainty essential. Probabilistic models provide a comprehensive framework 
for such integration (Ghahramani 2015).

Insights from the previous section were limited in two ways. First, our 
model of the discovery process was implicit and narrow: greedy search. While 
this model provided a useful parsimony principle allowing us to construct 
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well-defined, parsimonious “explanations” of observed histories (i.e., DAGs), 
it may distort inference insofar as it misspecifies the inventive process. By 
biasing reconstruction toward tree-like structures, parsimony provides a 
conservative test for multiple inheritance. Data that support a parsimonious 
explanation with multiple inheritance are quite likely to have been gener-
ated by some kind of recombinant process, but the details are likely to be 
wrong, and we learn nothing about the inventive process from the data. This 
leads to the second limitation. We have no idea how much certainty to have 
in our reconstructed cultural genealogy.

Probabilistic model-based inference has neither of these difficulties. First, 
we can construct a much more flexible model than greedy search. This flex-
ible model allows us to specify what we know about cultural inheritance (e.g., 
from qualitative or historical investigations of innovation, of which there are 
several examples in this book)—and what we do not know. This lack of knowl-
edge is represented by parameters in the model: we may have a general sense 
of the underlying generative process, but different model parameters realize 
different generative scenarios. Any hunches we have about the generative 
process can be further specified through priors on the parameters. For ex-
ample, our model might have a parameter controlling the average number of 
parents that contribute to a new invention (it will). If we have a strong reason 
to suspect that the average number of parents is two, then we can put a prior 
on that parameter concentrated around two. If not, we may choose a totally 
uninformative prior to represent our uncertainty about its value. But most of 
the action in probabilistic modeling does not take place in the priors; it takes 
place in inference. Inference is simply a process of learning from the data. The 
rules of probability (specifically, Bayes’ rule) allow us to use data to update 
our uncertainty. Doing so avoids the second limitation of parsimony meth-
ods: we can precisely quantify our certainty in the reconstructed genealogy.

Flexibility is important when reconstructing cultural genealogies, be-
cause of our agnostic position on patterns and processes of cultural evolu-
tion. It is very likely that cultural evolution follows different patterns in 
different domains. We know that stone tools and some features of language 
(to pick two examples) follow branching patterns. We strongly suspect that 
some areas of high technology follow combinatorial, reticulate patterns 
(Fleming and Sorenson 2001, 2004; Arthur 2009). Model-based inference al-
lows us to discover different patterns and processes of cultural evolution in 
different domains. We do not claim that our models perfectly describe the 
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world (even after inference). We do claim, however, that they give a relatively 
precise sense of the generative processes and historical trajectories that could 
explain available evidence. Crucially, our models can focus attention on the 
most plausible or informative influence pathways that merit detailed, costly 
historical or ethnographic investigation (Wimsatt 2013b); in other words, 
they can provide structure to the larger problem agenda of understanding 
cultural evolution in specific domains and guide the attention of relevant dis-
ciplinary partners to maximize the value of their contributions (see the in-
troduction by Love and Wimsatt).

Learning about Multiple Inheritance
With model-based inference, we allow the data to reduce our uncertainty 
about the nature of the inheritance process (Ghahramani 2015). As input 
data, we again have a set of types ordered in time. These types could be pat-
ents, publications, products, or other complex cultural entities (e.g., organi-
zations or people—anything decomposable into documented building blocks; 
see chapter 1). Each type j is characterized by a unique set of features.17 A 
type may correspond to multiple entities, insofar as these entities are “indis-
tinguishable” from the perspective of these features. The more refined the 
set of elementary features (i.e., the larger the number of distinct features), 
the more types there will be. Consider, for example, the description of pat-
ents using a few classification codes, as opposed to more detailed descrip-
tions extracted and normalized from full text. In the former case, many 
patents might correspond to the same type; in the later case, a single type 
might correspond to just a few patents, or even a unique one.

Types are ordered in time; we can retain time as a component of the 
model to account for time intervals, as in parsimony. We can also use tem-
poral information to model the probability that the recent and the ancient 
past are considered as sources of potential parents. If we have information 
about the spatial, social, and cognitive “place” of invention, we can learn from 
the data whether there are similar “local” biases (Adams 2002). For exam-
ple, we might have detailed information about the time and place of inven-
tion. Since recent inventions are generally easier to retrieve than much older 
inventions and local knowledge is easier to access than distant knowledge 
(e.g., due to the institutional or organizational structuring of cultural breed-
ing populations), we might modulate the probability of choosing a particular 
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parent by a decaying function of temporal separation and geographic dis-
tance. But since we do not know how much more likely inventors are to re-
trieve recent or local knowledge over ancient or distant knowledge, we 
characterize that function with unknown parameters. We can learn from the 
data a reasonable range of possible parameter values.

For simplicity and concreteness, we describe the model as a generative 
process. From the generative model, we can construct a joint probability dis-
tribution over the observed types F, the DAG of parentage assignments P, 
and the parameters Θ that control the number of parents and the sampling 
of features from parents. Given the joint distribution, we can construct the 
posterior probability over DAGs and parameters conditional on the obser-
vations using Bayes’ rule. The posterior probability is our ultimate target: 
given our modeling assumptions, our priors, and (most importantly) our 
available evidence, we can sample from the posterior probability distribu-
tion to discover which DAGs are more (and less) likely and which parameter 
values are more probable, given the evidence.

This is conceptually identical to the standard Bayesian approach to phylo-
genetic tree reconstruction (Felsenstein 2004; Bergstrom and Dugatkin 2012). 
In that case, we want to construct (or at least sample from) the posterior dis-
tribution over trees, conditioned on available data D. In principle, we may 
have a prior over trees; in practice, a flat prior is usually used so that every tree 
is equally probable, a priori. Using Bayes’ rule, we can construct the posterior:

	 	 (1)

where parameters of the model of character or sequence evolution have been 
suppressed. The likelihood Pr(D | Tree) is well defined and can be easily 
computed; it is the probability of the observed data given a particular tree, a 
particular model of evolution, and particular parameter values characteriz-
ing that model.

Our generative model for multiple inheritance can be quickly summa-
rized by listing its steps. The model begins at the earliest observation and 
iterates over the following:

1. Choose the number of parents.
2. Choose the identity of the parents.
3. Choose features from the set of parents.
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This is, of course, the same basic picture that guided our parsimony 
method above. In a fully Bayesian approach, we would begin the generative 
process by drawing the parameters from prior distributions (Gershman and 
Blei 2012). Given these parameters, we would then iterate the steps above. 
Note that even here some assumptions are baked into the model; for exam-
ple, the number of parents is not influenced by the identity of the parents 
nor can the features selected from one particular parent influence the selec-
tion of subsequent parents.18 We now (briefly) describe each step; we provide 
mathematical details in the appendix.

Number of Parents
For a given observation, the generative process begins by choosing the num-
ber of parents. The number of parents is drawn from a distribution con-
trolled by one or more parameters θp. The simplest such distribution would 
be a Poisson, in which case the parameter would control the average num-
ber of parents. This picture is similar to the so-called Indian buffet process, 
in which customers sample dishes from the buffet until they have chosen 
a number of dishes drawn from a Poisson distribution (Griffiths and Ghahra
mani 2011). Using a Poisson distribution, however, assumes that there is a 
typical number of parents and that the distribution of parents is tightly 
peaked around that number. That might not be the case—another instance 
in which model specification will shape inference. Ideally, one would explore 
models with alternative distributions (and mixtures of distributions) and 
check them using techniques for model criticism, as through predictive sam-
ple reuse or posterior predictive checks (Blei 2014). In full generality, one 
might permit the parameter(s) controlling the number of parents to change 
over the course of evolutionary history, allowing one mode of cultural evo-
lution (e.g., branching) to dominate earlier portions of the DAG and another 
mode (e.g., reticulation) to dominate later parts. See Silvestro et al. (2014) for 
an inspiring approach to capturing such shifts.

Choosing Parents
Once the number of parents has been selected—equivalently, once we 
have selected the in-degree of the node j in the directed acyclic graph 
representation—​we must choose specific parents. There are many ways to 
formalize this choice process. For simplicity, we assume that each parent is 
chosen independently. If each parent, in turn, has an equal probability of 
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being chosen (a highly unrealistic assumption), then each invention will have 
an asymptotically Poisson number of offspring (i.e., out-degree). A slightly 
more complicated model, imitating the Indian buffet process, assumes that 
inventors start with the most recent potential parents and then work back-
ward in time. Each potential parent is considered; it is selected as an ancestor 
with a probability proportional to its popularity (i.e., its current number of 
offspring or, equivalently, out-degree). This process repeats until the full com-
plement of parents is chosen. In this model, preferential attachment (which 
asymptotically produces a power-law distribution of out-degrees) competes 
with recency bias. Although older nodes may have given birth several times, 
they are less likely to be selected as they get older; more nodes must be 
“skipped” to get to them. In general, the probability of choosing a particular 
parent can depend on many different factors. Parents might have an intrin-
sic “fitness.” This fitness could be drawn from some distribution when the 
parent is initially created. More realistically, the fitness could be determined 
by the constellation of features present in the invention (thus allowing for 
inventions with similar features to have similar fitness). Preferential attach-
ment (rich-get-richer dynamics) could play a role, reflecting prestige bias, 
conformist bias, or both (Boyd and Richerson 1988; Mesoudi 2011). Parent 
choice may be shaped by explicit markers of social identity, such as disci-
plinary, professional, or institutional affiliation (see chapters 1 and 12), as 
well as by temporal, spatial, social, and conceptual distance. Finally, we 
could explicitly model choice-set formation so that inventors make a cogni-
tively plausible choice across a small number of possibilities, rather than 
implicitly considering the entire universe of possible parents (Swait and 
Ben-Akiva 1987; Bruch, Feinberg, and Lee 2016). These more complex mod-
els of parent choice would allow researchers to test important assumptions. 
For example, we could discover that inventors are more likely to select a set 
of parents from the “same” cultural breeding population (e.g., scientific 
discipline or technology area).

Number of Features
We assume that the number of features sampled from the parents is inde-
pendent of the number or identity of the parents. This is, again, a simplify-
ing assumption; it could be that inventions with more parents tend to sample 
more features or that inventions with high-fitness or popular parents sam-
ple more. As with the number of parents, the simplest choice for this distri-
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bution is Poisson, though this could be generalized to admit more complex 
distributions.

Increasing Complexity
As currently described, this generative model has a major limitation. It can-
not easily deal with cultural evolution in which features accumulate. Yet this 
is an incredibly common mode, both in technological evolution (Arthur 
2009) and in the sequential acquisition of skills by developing biological in-
dividuals (Love and Wimsatt, the introduction to this book; see also Wim-
satt, chapter 1). Building blocks already characterized by many features can 
be used to assemble an even larger invention, such as airplanes and boats 
combined into an aircraft carrier (Arthur 2009). If our types are defined by 
features at a consistent granularity, then later inventions may have more fea-
tures, on average. We can capture this by allowing the average number of 
features to grow over time; this growth rate can be controlled by one or more 
parameters subject to inference. A more interesting approach would allow 
the data to “suggest” bundles of elemental features that should be treated as 
a single feature because of frequent copresence. This compression or dimen-
sionality reduction of the feature space implements a form of parsimony; it 
attempts to simplify the explanation of observed facts by reducing the num-
ber of components. There are a range of approaches to so-called feature or 
representation learning. Matrix factorization (Bengio, Courville, and Vin-
cent 2013) could be applied periodically or continuously to update the feature 
space confronting inventors; the compression schedule could be optimized so 
that the number of compressed features in any given invention remains rela-
tively constant. A latent aggregation–fragmentation process provides a purely 
probabilistic alternative. Features can aggregate into a bundle with some 
small probability, and bundles can disaggregate into constituent features with 
another (Ghahramani 2013; Blei 2014). This would provide an explicit prob-
abilistic model of the black-boxing process. A more radical alternative would 
replace surface features with latent feature generators, emulating topic mod-
eling (Blei 2014). However it is implemented, such chunking (Wimsatt 2013a) 
is consistent with both plausible limits on working memory (Miller 1956) 
and the robustness of modular assembly (Simon 1969; Latour 1987; Arthur 
2009). As in the exploratory analysis, the consistent chunking of several 
features into a bundle suggests a black-boxing event and could be used to 
detect such moments in the unfolding cultural-evolutionary process.19

Copyright 2019 by the Regents of the University of Minnesota



220	 Jacob G.  Foster and James A.  Evans

Choosing Features
Once the number of features has been selected, we must choose specific fea-
tures. As with parent selection, it is simplest to assume that features are se-
lected independently. Indeed, the simplest version of feature selection would 
look very much like parent selection, moving through features in some or-
der and selecting them proportional to their popularity, either over the en-
tire past history of the system or over the set of parents.20 Unlike parent 
selection, however, we allow the creative unit (the inventive individual or 
team) to introduce some number of new features unobserved in the parent 
set—and possibly never yet observed in the history of the system. This step 
allows for the introduction of radical novelty to the inventive system; not just 
the novel combination of features but the addition of entirely new features 
(Foster, Rzhetsky, and Evans 2015).21 On a more mundane level, this model-
ing assumption allows any invention to be generated from any parent set, 
albeit with very small probability. This is useful computationally. It is also 
important substantively: it may be that inventors introduce a particular fea-
ture by plucking it from the inventive zeitgeist, rather than drawing on a par-
ticular parent. The capacity to generate new features also connects this 
generative model to Bayesian nonparametric processes more generally, as the 
number of potential features is not determined a priori in the model, al-
though it is obviously given by the data.

Inference
Although somewhat nonobvious from the generative description, the model 
outlined above is remarkably close to standard phylogenetic inference in 
structure. Instead of a tree, the parentage assignment P describes a DAG that 
respects the time ordering of inventions F. Earlier inventions point toward 
later inventions that draw on them for features. For a given parentage assign-
ment and values of the generative parameters Θ (i.e., the two explanatory 
parts of the model), we can calculate the probability of the data Pr(F | P, Θ) 
directly. We have priors on the model parameters Pr(Θ), which may be in-
formative or uninformative. Given the parameters, the probability of any 
particular DAG P is determined. We can combine all these parts using 
Bayes’ rule to compute the posterior distribution over the space of DAGs 
(i.e., explanatory histories) and parameters (i.e., explanatory processes). It is

	 .	 (2)
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The denominator cannot be calculated because computing the probability 
of the data requires a sum over all possible DAGs P. We can approximate the 
posterior, as in phylogenetic inference, using standard methods like Markov 
chain Monte Carlo (Gershman and Blei 2012) to draw from or otherwise ap-
proximate the posterior distribution.

Modeling the Cultural Evolution of Developing 
Individuals, Organizations, and Institutions
While our approach was inspired by the challenges of modeling multiple in-
heritance in technological evolution, it can be applied to any cultural data 
for which there is dense sampling and information about the sequence of ob-
servations. One particularly exciting application concerns data in which 
well-defined units with temporal duration but malleable features (e.g., indi-
vidual humans, organizations, genres, or states) are observed repeatedly. In 
this case, we can view an observation of unit j at time t as a recombination of 
its state at last observation with features drawn from other available “parents.”

This strategy emulates the approach suggested in Boyd and Richerson 
(1988) for theoretical models of horizontal transmission during the life span. 
In other words, unit j selects its characteristics at time t by sampling from 
its previous state as well as from its contemporaries and predecessors. The 
astute reader will have noticed that this model is very close to models of so-
cial contagion; given this similarity, we must be vigilant against the possible 
confounding of social contagion with latent homophily (Shalizi and Thomas 
2011). That said, the adopted feature(s) must come from somewhere, and it is 
possible that specific contagion versus diffuse adoption driven by latent 
homophilous traits can be distinguished by the presence or absence of spe-
cific influence paths in the posterior distribution over DAGs.

In practice, capturing the known features of human cultural develop-
ment, such as the sequential nature of skill acquisition, would require relax-
ing many of the assumptions outlined above. The features retained by unit j 
from its past state would affect its selection of “parents” for cultural updat-
ing, as well as the features chosen from them (Foster 2018). For example, it 
is almost surely the case that someone who knows single-variable calculus 
at time t and multivariable calculus at time t + 1 retained his knowledge of 
single-variable calculus and learned the multivariable version from his 
teacher and/or textbook. It is also likely that this teacher is someone close in 
physical, social, and organizational space. Incorporating geographic or 
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social proximity in the choice of cultural parents, including evolving mark-
ers of social identity (see chapter 12), would allow us to deal directly with 
cultural population structure (Wimsatt 2013a). Note that a model of “par-
ent” selection incorporating cumulative advantage is very similar to pres-
tige bias, an important mechanism in cultural microevolution (Boyd and 
Richerson 1988; Mesoudi 2011). In our running example, this imaginary stu-
dent is more likely to select a popular model known for her excellent peda-
gogy. The student may pick up other cultural traits as a by-product of this 
learning relationship, such as a specific story or preference for a certain mode 
of investigation. This same framework would provide a powerful and precise 
technique for studying the evolution of organizations and institutions more 
broadly, as there are often repeated observations of these units.

In other words, this formal trick extends the range of our framework 
from cultural macroevolution to the microevolutionary dynamics of cultural 
change. We thereby provide an intriguing twist on Wimsatt’s observation 
in chapter 1 of this volume that heredity and development “interchange roles 
in the study of biology and culture,” with cultural development being more 
transparent to investigation and hence helping to illuminate cultural hered-
ity. In our framework, long-term patterns of cultural heredity and short-term 
patterns of cultural development are treated in the same way!

Testing Models of Multiple Inheritance
In describing our approach to the study of multiple inheritance, we have em-
phasized that studying cultural macroevolution requires uncertain infer-
ence of unknown processes from rich data. How might we validate these 
models? We briefly mentioned internal checks using model criticism, as 
through predictive sample reuse or posterior predictive checks (Blei 2014). 
Such checks are important, but they are unlikely to persuade the obdurate 
skeptic. Thus, we note that, just as biologists rely on paleontologists to vali-
date the presence of particular extinct organisms at particular times, so too 
can students of computational cultural evolution turn to historians, sociol-
ogists, anthropologists, and archaeologists to validate particular claims about 
particular influence pathways and inventive events; they might also turn to 
cognitive scientists to validate the detailed cognitive mechanisms or pro-
cesses implied by their inferences. Because such validating steps are expen-
sive in time, labor, and expertise, validation should start with inferences that 
show the least uncertainty (e.g., an assembly process that shows up in 99 per-
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cent of the DAGs sampled from the posterior distribution), although weaker 
inferences can give provocative hypotheses as well. In this way, large-scale 
computational studies of cultural evolution depend on and inform a wide 
range of rich disciplinary perspectives and methodologies. In other words, 
our approach both scaffolds and is scaffolded by a much larger research 
agenda. It provides a way to analyze unprecedented new data sets (Evans and 
Foster 2011) as important model organisms for the large-scale quantitative 
study of cultural evolution without embracing the limiting conceptual vo-
cabulary of a single discipline (see the introduction by Love and Wimsatt).22

TRIMs, TRAMs, and the Mode of  
Cultural Evolution
In this chapter, we described the foundations of an agnostic approach to re-
constructing cultural lineages—one general enough to identify both pat-
terns dominated by branching and patterns dominated by reticulation.23 It 
is worth reflecting briefly on when and why we might expect to see these two 
archetypal modes of cultural inheritance. Approaches based on phylogenetic 
inference have leaned on the assumption that Transmission Isolating Mech-
anisms (TRIMs) like geopolitical boundaries, ethnocentrism, and language 
barriers limit the mixture and recombination of cultural components across 
lineages (Durham 1991; Mesoudi 2011). In the language of Wimsatt (2013a), 
these TRIMs mostly appeal to population structure—they are mechanisms 
that prevent culturally distinct populations from mixing and create distinct 
cultural breeding populations (see chapter 1). For example, language barri-
ers could be viewed as institutionally induced cultural population structure. 
TRIMs make the pattern of cultural evolution branch-like, with a relatively 
slow pace—novelty is just harder to come by when new components and 
combinations must be produced within a cultural lineage. Hence, TRIMs 
create patterns of cultural evolution perfectly suited for detection by exist-
ing methods of inference that assume a single dominant inheritance path-
way for each observed entity.

Although the precise TRIMs that are commonly invoked in cultural phy-
logenetics are much less common in the modern era of science and technol-
ogy, their analogs nevertheless exist. For example, the citation of patents is 
slower, and radiates more slowly outward in space from the focal patent, than 
the citation of scientific articles (Adams, Clemmons, and Stephan 2006). Sci-
entific communities can be largely cut off from one another by geopolitical 
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boundaries (as in the cladogenesis that resulted in a distinctive tradition of 
Soviet mathematics in the mid-twentieth century) or by jargon (Vilhena et al. 
2014). And population structure, whether imposed by geography, disciplines, 
schools of thought, or status, can substantially slow the spread of new scien-
tific or technical knowledge, especially when it is difficult to codify (Kaiser 
2009). Whenever transmissible units depend on extensive previous training 
or time-consuming pedagogy for reliable transmission (Kaiser 2009), their 
spread across populations will be slower, and cultural evolution is more likely 
to manifest a branching mode on some levels of analysis (Boyd et al. 1997; 
Wimsatt 2013a). This should be true whether the transmissible unit is craft-
ing a stone tool or crafting an elegant proof. Thus, organizationally enabled 
scaffolding, while facilitating cumulative cultural evolution within a particu-
lar lineage (e.g., a discipline), promotes the development of distinct cultural 
breeding populations. Careers can be strongly canalized within an existing 
cultural population, such as when departments only hire faculty with train-
ing in their specific discipline or with degrees from a select range of similar 
departments (Clauset, Arbesman, and Larremore 2015). This canalization 
limits cumulative cultural evolution across lineages (see chapter 1).

Nevertheless, the system of modern science and technology also contains 
Transmission Accelerating Mechanisms or TRAMs, which increase the rate 
of horizontal transmission and recombination. These TRAMs range across 
the “relevant units of the cultural system” described by Wimsatt in this book. 
TRAMs most obviously include infrastructure such as modern transporta-
tion and communication technologies. They also include institutional con-
ventions, like the increased dominance of English as scientific lingua franca; 
indeed, spoken language and writing have been powerful TRAMs and 
TRIMs at different scales throughout human history (see chapters 9 and 10). 
Classic Mertonian norms (like universalism) promote the free flow and ex-
change of ideas (Merton 1973), as do the explicit references, patent subclasses, 
and article key words associated with the publication process itself—all con-
ventions that make information easier to find and retrieve. International 
conferences break down geographic population structure, while interdisci-
plinary meetings aim to break down the population structure created by dis-
cipline, training, and school of thought. Interdisciplinary hiring redirects 
careers across multiple cultural breeding populations, facilitating recombi-
nation across cultural lineages. Most intriguingly, technologies and some 
ideas can internalize their scaffolding so that they have easily discernible 
affordances. This process of black boxing allows the technology to move and 
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recombine more easily, as described by Bruno Latour (1987) and Michel 
Callon (1986). In a sense, these black-boxed artifacts actually scaffold their 
own recombination (Wimsatt 2013a), and we hypothesize that such auto-
scaffolding is the crucial TRAM driving rapid, recombinant, and cumula-
tive technological evolution.

Our models and exploratory methods are designed precisely to allow a 
system of artifacts, ideas, institutions, or individuals to reveal its dominant 
mode of cultural evolution, whether that be branching, reticulation, or some 
mixture of the two. In revealing the varying tempo and mode of cultural evo-
lution across many contexts, these methods will help us understand in de-
tail the competition between the TRIMs and the TRAMs that together 
pattern the evolution of technology, ideas, and human culture more broadly. 
We hope that our methods, and the underlying conceptual apparatus, can 
accelerate the move “beyond the meme” toward the integrated, interdisci-
plinary, multimethod study of cultural evolution.

Mathematical Appendix
Here, we provide concrete mathematical details and illustrations for the 
methods outlined above. This appendix is best read in parallel with the main 
text.

Parsimony
For each invention j, let  be the set of all features in invention j, 
once any novel features have been removed. The set of all possible parents of 
j is denoted . For each potential parent , we compute the intersec-
tion of the set of features in j that could have been inherited ( ) and the set 
of features in p (Fp); call this

	 .	 (3)

We select as the first or “prime” parent the prior invention k with the 
maximum Wjk. This is the prior invention that explains the most features. If 
there are multiple equally explanatory inventions, we can select the inven-
tion with the smallest Δtjk (recency bias), the smallest Δdjk (local bias), and 
so forth. If all parsimony principles are exhausted, choose at random.

Now define  as the set of all features in invention j that remain to be 
explained, given that k is one of the parents. We iterate the procedure above, 
defining
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	 	 (4)

and selecting as the next parent the invention m with the maximum Wjm|k 
(i.e., the one that explains the most features not explained by k). We re-
peat this procedure until all heritable features of j have been explained by 
one or more parents. We repeat this procedure for all j to reconstruct a 
parsimonious history for our observed technologies. Note that this his-
tory will be a directed graph; we establish the convention that arcs run to 
invention j from parents p, k, m, and so on, so that Wjp counts the number 
of components that flow from p to j, Wjm|p counts the number of compo-
nents that flow from m to j, and so on. For notational simplicity, we will 
refer to Wjm|p as Wjm, Wjq|pm as Wjq, and so on, unless the “conditioning” 
is important.

Black Boxing Measures
Define Wj = |Fj| —that is, the number of features in the j-th invention. Now 
define

	 	
(5)

as the fraction of all components in j inherited from ancestor p. The primary 
inheritance is just the largest  over all ancestors p. Call this . Prop-
erties of the frequency distribution of primary inheritance  can 
provide suggestive evidence for branching or reticulate evolution.

With slight abuse of notation, we can define the primary contribution

	 	
(6)

as the fraction of components in p passed on to its descendent j in a given 
reconstruction, where we look at cases in which p is the primary, secondary, 
tertiary ancestor, and so on. The mean  and mode over all 
descendants j give us an idea of whether the components of p are typically 
taken as a block or whether they are separable.

The key signature for black boxing is a modal  for a given k that is sig-
nificantly higher than the typical mode of  over the population of p’s or, 
equivalently, a mean primary contribution  that is significantly higher 
than the mean  over the population of p’s. When the mean primary con-
tribution  is high but the mean fraction of components that k inherits 
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from its ancestors  is low (or, equivalently, when the primary in-

heritance is low), it is likely that invention k has sampled from several 
sources and black boxed the parts.

Probabilistic Models of Multiple Inheritance
As input, we again have a set of types ordered in time. Each type j is charac-
terized by a unique set of features Fj. We can equivalently represent this as a 
binary feature vector fj of length M, where types have M possible features. 
Thus, we observe a time-ordered collection of N types F = {f1, f2, f3, . . . , fN}.24

Number of Parents
For a given observation fj, the generative process begins by choosing the 
number of parents . The number of parents is drawn from a distribution 
controlled by one or more parameters . The simplest such choice would be 
a Poisson distribution, Poisson(αp), with αp controlling the average number 
of parents. This is similar to the so-called Indian buffet process, where cus-
tomers stop after they have sampled Poisson(α) dishes (Griffiths and Ghah-
ramani 2011).25 This distribution, however, would assume that there is a 
typical number of parents and that the distribution of  is tightly peaked 
around that number. This could be relaxed.

Choosing Parents
There are many ways to formalize parent choice. For simplicity, we assume 
that the probability of assembling a particular collection of n parents 
factorizes

	 .	 (7)

Number of Features
We assume that the number of features to be sampled from the parents is 
independent of the number or identity of the parents. As with the number 
of parents, the simplest choice for this distribution is Poisson(αf), though 
this could be generalized to admit more complex distributions.

Increasing Complexity
Our generative model, as proposed, cannot easily deal with cultural evolu-
tion in which features accumulate. One way to deal with this is to make the 
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parameter controlling the number of features time dependent. For example, 
αf grows with t at a rate β that is also subject to inference. A more interesting 
approach would allow the data to “suggest” relevant bundles of elemental fea-
tures that should themselves be treated as features because of frequent 
copresence—a compression of the feature space. This could be done in a 
number of ways, as described in the main text.

Choosing Features
Once the number of features has been selected, we must choose specific 
features. Unlike parent selection, however, we allow the creative unit to 
introduce some number (0 − m) of new features ~Poisson(αnovel) unob-
served in the parent set—and possibly never yet observed in the history of 
the system. This allows any observation fj to be generated from any parent 
set while also allowing true novelty through the creation of entirely new 
features.

Inference
Although somewhat nonobvious from the generative description, the model 
defined above is remarkably close to standard phylogenetic inference in 
structure. The parentage assignment P is just a directed acyclic graph that 
respects the time ordering of F = {f1, f2, f3, . . . , fN}. For a given P and values 
of the generative parameters—for example, αp and —we can calcu-
late Pr(F | P, Θ) quite directly. Then

	 	 (8)

where the denominator cannot be calculated because of the required sum 
over all possible P. Thus, we can approximate the posterior, as in phyloge-
netic inference, using standard methods such as Markov chain Monte Carlo 
(Gershman and Blei 2012).

Notes
	 1.	 The frequency of horizontal gene transfer among prokaryotic taxa 
(Doolittle and Bapteste 2007) has created an urgent need for methods to 
study reticulation in biology, for example, Kunin et al. (2005). Although com-
putational biologists have answered the call (Huson, Rupp, and Scorna-
vacca 2010), these methods are either too generic (i.e., they are essentially 
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clustering) or involve too many specific biological processes (e.g., gene dele-
tion or insertion) to provide a useful starting point. Until very recently, there 
were no Bayesian, generative model–based approaches to reticulation, though 
Wen, Yu, and Nakhleh (2016) may provide a way forward.
	 2.	 In some cases, horizontal transmission is reserved for trait flows 
within a generation (peer-to-peer), and oblique transmission is used when 
traits flow from nonparental individuals in an earlier generation to individ-
uals in a later generation. We will not make this distinction here.
	 3.	 Defined by Wimsatt as “structure-like dynamical interactions with 
performing individuals that are means through which . . . competencies are 
constructed or acquired by individuals or organizations.”
	 4.	 Note the epidemiological language.
	 5.	 Note here the role of several factors explored at length in this volume 
as TRIMs; e.g., language (see chapter 9) and identity (see chapter 12).
	 6.	 As we will argue later, the methods we propose extend unproblem-
atically to some other cultural items and could even be used to model se-
quential skill acquisition by developing biological individuals (see the 
introduction by Love and Wimsatt; see also chapter 1). For concreteness, we 
focus the discussion on science and technology, but the reader should keep 
implicit generalizations in mind throughout.
	 7.	 For many problems, a tree-based simplification could be illuminat-
ing as an initial analysis of data.
	 8.	 We assume here that the features are already given, as in patent 
classes, PACS (physics and astronomy classification scheme) codes, or MeSH 
(medical subject heading) terms. In cases in which features must be con-
structed by the analyst from scratch, one can draw upon a well-developed 
literature in feature engineering.
	 9.	 The cleaned, curated features given by patent classes, PACS codes, and 
MeSH terms are useful insofar as they approximate, in some fashion, the 
principles of vision and division that characterize the relevant communities 
of practice. We leave aside the very interesting question of how different com-
munities of practice might break up the same invention into different ele-
mentary building blocks; this would require detailed thinking about the 
sequentially dependent and organizationally scaffolded skill acquisition 
(Goodwin 2017) that would yield different ways of seeing the same inven-
tion (Love and Wimsatt, the introduction to this book; Wimsatt, chapter 1), 
that is, different modes of “professional vision” (Goodwin 1994). Data sci-
ence techniques for feature engineering may be useful for heuristic feature 
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construction where expert taxonomies are incomplete or nonexistent (Scott 
and Matwin 1999; Anderson et al. 2013).
	 10.	 While this may seem like a strong assumption, note that it has a cer-
tain plausibility in terms of search. If there are many possible histories that 
enrich the “primary” parent with residual features (the three-parent history) 
but only one history that pairs the right two inventions (the two-parent his-
tory), then we are more likely to observe someone start from the primary 
parent and then enrich than to observe an inventor who lands on exactly the 
right pair of parents.
	 11.	 Of course, this introduces a bias into our reconstruction, but absent 
strong evidence to the contrary, we think that the greedy assumption tends 
to capture more probable pathways. It is also consistent with approaches to 
human cognition, like case-based reasoning (Aamodt and Plaza 1994).
	 12.	 If we wish to weaken this assumption privileging significant inheri-
tance from a single parent p, we can search over the space of pairs, triples, 
tetrads, etc., for the combination that contributes the most features. The com-
putational cost for this exploration is high, however. Rather than searching 
through n possible parents for the single most explanatory parent (so the 
overall search is ), we would have to search through  pairs,  
triples,  tetrads, etc. The computational cost grows exponentially: 

, etc.
	 13.	 It will be acyclic—i.e., have no loops i → j → k → i—because the fu-
ture cannot influence the past by construction.
	 14.	 This method of constructing a parsimonious evolutionary explana-
tion is not assured to recover the actual inheritance pattern of cultural traits. 
Moreover, the adaptive, evolutionary significance of inheriting a particular 
feature may only be minimally associated with the primary inheritance on 
which parsimony focuses.
	 15.	 Indeed, Wimsatt notes that “black boxing is a crucial feature of most 
complex sequential skill acquisition” in his contribution to this book.
	 16.	 Note that, on this account invention, k (with low primary inheritance 
and high primary contribution) creates the black box, which persists as a 
packet into the next generation. In principle, persistence across multiple gen-
erations would provide stronger evidence for true black boxing.
	 17.	 The need to characterize types with discrete features or “building 
blocks” is an obvious limitation and a potential source of bias. These meth-
ods work best for entities that have already been characterized with features. 
As discussed previously, it is certainly possible to induce features when they 
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are not already available, but we must be especially cautious about inferences 
from these induced features. Independent validation of the features is a ne-
cessity. And even when features have been developed for other reasons (e.g., 
search or classification), these may not always correspond to the features that 
are relevant to the inventive process, introducing bias.
	 18.	 This will need to be relaxed in section 7 to model the sequential skill 
acquisition common in developing biological individuals or organizations.
	 19.	 As new, complex features are discovered—by inventors through black 
boxing and by analysts through feature reduction—even old artifacts could 
“acquire” new, heritable features as bundles of components are reinterpreted 
as coherent units. Note that the routine combination of components could 
take place immediately following their initial combination, could increase 
gradually, or could follow a discontinuous trajectory as an old combination 
becomes fit to a new environment. For example, consider the explosive rise 
in the use of Bayesian methods following the advent of computers, which 
scaffolded and explicitly catalyzed their application (see chapter 11).
	 20.	 This simplifying assumption runs roughshod over the sequential de-
pendence of features—or even their functional interdependence.
	 21.	 The frequency of entirely new features will scale inversely with the 
resolution of existing features. For example, a new feature in a coarse-grained 
scheme might include a custom-built molecule, but this would simply be a 
new combination of existing features if atoms or molecular motifs were com-
ponents (Arthur 2009).
	 22.	 Here, we are thinking especially of patents (see chapter 6).
	 23.	 While our approach allows panmixia—i.e., the selection of arbitrary 
parents to produce offspring (see chapter 1)—it also allows distinct cultural 
breeding populations to emerge from the data. It also allows researchers to 
encode distinct hypotheses about factors like geographic, social, or cultural 
distance that structure cultural breeding populations and violate panmictic 
assumptions.
	 24.	 We largely follow the notation and presentation of Gershman and Blei 
(2012) here.
	 25.	 If the feature set describing all parents is finite, we could model this 
by a simple Beta-Bernoulli process. There are many ways to set up a concep-
tually similar generative model; the important ingredients are (1) a process 
controlling the number of parents, (2) a process selecting the parents, and 
(3) a process choosing features from the set of parents.
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